%ELM:ELM基于近红外光谱的汽油测试集辛烷值含量预测结果对比—Jason niu
load spectra_data.mat
temp = randperm(size(NIR,1)); P_train = NIR(temp(1:50),:)';
T_train = octane(temp(1:50),:)'; P_test = NIR(temp(51:end),:)';
T_test = octane(temp(51:end),:)';
N = size(P_test,2); [Pn_train,inputps] = mapminmax(P_train);
Pn_test = mapminmax('apply',P_test,inputps); [Tn_train,outputps] = mapminmax(T_train);
Tn_test = mapminmax('apply',T_test,outputps); [IW,B,LW,TF,TYPE] = elmtrain(Pn_train,Tn_train,30,'sig',0); tn_sim = elmpredict(Pn_test,IW,B,LW,TF,TYPE); T_sim = mapminmax('reverse',tn_sim,outputps); result = [T_test' T_sim']; E = mse(T_sim - T_test); N = length(T_test);
R2=(N*sum(T_sim.*T_test)-sum(T_sim)*sum(T_test))^2/((N*sum((T_sim).^2)-(sum(T_sim))^2)*(N*sum((T_test).^2)-(sum(T_test))^2)); figure(1)
plot(1:N,T_test,'r-*',1:N,T_sim,'b:o')
grid on
legend('真实值','预测值')
xlabel('样本编号')
ylabel('辛烷值')
string = {'ELM:ELM基于近红外光谱的汽油测试集辛烷值含量预测结果对比—Jason niu';['(mse = ' num2str(E) ' R^2 = ' num2str(R2) ')']};
title(string)

ELM:ELM基于近红外光谱的汽油测试集辛烷值含量预测结果对比—Jason niu的更多相关文章

  1. RBF:RBF基于近红外光谱的汽油辛烷值含量预测结果对比—Jason niu

    load spectra_data.mat temp = randperm(size(NIR,1)); P_train = NIR(temp(1:50),:)'; T_train = octane(t ...

  2. PLS:利用PLS(两个主成分的贡献率就可达100%)提高测试集辛烷值含量预测准确度并《测试集辛烷值含量预测结果对比》—Jason niu

    load spectra; temp = randperm(size(NIR, 1)); P_train = NIR(temp(1:50),:); T_train = octane(temp(1:50 ...

  3. PCA:利用PCA(四个主成分的贡献率就才达100%)降维提高测试集辛烷值含量预测准确度并《测试集辛烷值含量预测结果对比》—Jason niu

    load spectra; temp = randperm(size(NIR, 1)); P_train = NIR(temp(1:50),:); T_train = octane(temp(1:50 ...

  4. NN:实现BP神经网络的回归拟合,基于近红外光谱的汽油辛烷值含量预测结果对比—Jason niu

    load spectra_data.mat plot(NIR') title('Near infrared spectrum curve—Jason niu') temp = randperm(siz ...

  5. ELM:ELM实现鸢尾花种类测试集预测识别正确率(better)结果对比—Jason niu

    load iris_data.mat P_train = []; T_train = []; P_test = []; T_test = []; for i = 1:3 temp_input = fe ...

  6. GRNN/PNN:基于GRNN、PNN两神经网络实现并比较鸢尾花种类识别正确率、各个模型运行时间对比—Jason niu

    load iris_data.mat P_train = []; T_train = []; P_test = []; T_test = []; for i = 1:3 temp_input = fe ...

  7. Azure上搭建ActiveMQ集群-基于ZooKeeper配置ActiveMQ高可用性集群

    ActiveMQ从5.9.0版本开始,集群实现方式取消了传统的Master-Slave方式,增加了基于ZooKeeper+LevelDB的实现方式. 本文主要介绍了在Windows环境下配置基于Zoo ...

  8. 机器学习基础:(Python)训练集测试集分割与交叉验证

    在上一篇关于Python中的线性回归的文章之后,我想再写一篇关于训练测试分割和交叉验证的文章.在数据科学和数据分析领域中,这两个概念经常被用作防止或最小化过度拟合的工具.我会解释当使用统计模型时,通常 ...

  9. 基于开源软件构建高性能集群NAS系统,包括负载均衡(刘爱贵)

    大数据时代的到来已经不可阻挡,面对数据的爆炸式增长,尤其是半结构化数据和非结构化数据,NoSQL存储系统和分布式文件系统成为了技术浪潮,得到了长足的发展.非结构化数据目前呈现更加快速的增长趋势,IDC ...

随机推荐

  1. STM32应用实例十五:STM32的ADC通道间干扰的问题

    最近我们在开发一个项目时,用到了MCU自带的ADC,在调试过程中发现通道之间村在相互干扰的问题.以前其实也用过好几次,但要求都不高所以没有太关注,此次因为物理量的量程较大,所以看到了变化. 首先来说明 ...

  2. Oracle12c安装和卸载图文教程

    注:本文来源于:<Oracle12c安装和卸载图文教程> 一.安装 1.去官网下载相应的版本 2.下载好的两个压缩文件压缩到一个文件夹中 3.打开上个步骤的文件夹,运行stepup,显示如 ...

  3. /etc/rc.d/init.d/iptables: No such file or directory 错误原因

    注:本文转载自cnblogs:一天学点的文章</etc/rc.d/init.d/iptables: No such file or directory 错误原因> RedHat Enter ...

  4. leetcode(js)算法89之格雷编码

    格雷编码是一个二进制数字系统,在该系统中,两个连续的数值仅有一个位数的差异. 给定一个代表编码总位数的非负整数 n,打印其格雷编码序列.格雷编码序列必须以 0 开头 示例 1: 输入: 2 输出: [ ...

  5. nginx实践(一)之静态资源web服务

    静态资源服务场景CDN 配置语法-文件读取(nginx优势之一sendfile) 配置语法-tcp_nopush 简单的说就是把多个包合并,一次传输给客户端 配置语法-tap_nodelay 配置语法 ...

  6. SpringData分页功能

    在SpringData中实现分页功能我们需要将接口实现PagingAndSortingRepository这个接口提供了分页查询的方法 Page<T> findAll(Pageable p ...

  7. 在anaconda中安装tensorflow

    打开Anaconda Prompt, step1: 输入清华仓库镜像 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/ ...

  8. JS实现继承的几种方式(转)

    转自:幻天芒的博客 前言 JS作为面向对象的弱类型语言,继承也是其非常强大的特性之一.那么如何在JS中实现继承呢?让我们拭目以待. JS继承的实现方式 既然要实现继承,那么首先我们得有一个父类,代码如 ...

  9. AI-跨域、垃圾回收、content_type组见、接口处理

    AI-跨域.垃圾回收.content_type组见.接口处理 跨域 为什么有跨域?什么时候遇见的?答:由于浏览器的同源策略 阻止ajax请求 不阻止src请求:在测试时,项目上线后不会遇见跨域.源:协 ...

  10. CHENGDU3-Restful API 接口规范、django-rest-framework框架

    Restful API 接口规范.django-rest-framework框架 问题:什么是API? 答:API是接口,提供url. 接口有两个用途: 为别人提供服务,前后端分离. 为什么使用前后端 ...