z变换及其收敛域

回顾前面的文章,序列$x[n]$的傅里叶变换(实际上是DTFT,由于本书把它叫做序列的傅里叶变换,因此这里以及后面的文章也统一称DTFT为傅里叶变换)被定义为

$X(e^{j\omega}) = \displaystyle{ \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} }$

序列$x[n]$的z变换被定义成

$X(z) = \displaystyle{ \sum_{n=-\infty}^{\infty}x[n]z^{-n} }$

其中$z$就是一个复数变量,可见$z$变换与傅里叶变换一样把序列变成了函数。复变量$z$可以表示形式$z=|z|e^{j\omega}=re^{j\omega}$,代入z变换变成

$X(z) = \displaystyle{ \sum_{n=-\infty}^{\infty}x[n]r^{-n}e^{-j\omega n} }$

可以发现傅里叶变换就是$r=1$的z变换。

 

要使得z变换有意义,那么变换所得的函数必须在有限处收敛,即

$\begin{align*}
|X(z)|&= \left|\sum_{n=-\infty}^{\infty}x[n]r^{-n}e^{-j\omega n}\right|\\
&<\sum_{n=-\infty}^{\infty}|x[n]|r^{-n} \\
&=x[0]+ \sum_{n=1}^{\infty}|x[n]|(r^{-1})^n+\sum_{n=1}^{\infty}|x[-n]|r^n <\infty
\end{align*}$

按照root test,需要满足以下条件才能使得函数收敛

$\left\{\begin{matrix}
\displaystyle{ \limsup_{n\to\infty}|x[n]|^{\frac{1}{n}}r^{-1} < 1 }\\
\displaystyle{ \limsup_{n\to\infty}|x[-n]|^{\frac{1}{n}}r < 1 }
\end{matrix}\right.$

$\left\{\begin{matrix}
r &> &\displaystyle{\lim_{n\to\infty} |x[n]|^{\frac{1}{n}}} \\
r &< &\displaystyle{\lim_{n\to\infty} |x[-n]|^{\frac{1}{-n}}}
\end{matrix}\right.$

观察上面的不等式,可以发现z变换的收敛可以分为五种

  • $x[n]$是右边序列,即序列在$n<N_1<\infty$处全为0,那么该序列的收敛域就是从极点(使得函数趋于$\pm\infty$的点)往外延伸到$z=\pm\infty$
  • $x[n]$是左边序列,即序列在$n>N_2>-\infty$处全为0 ,那么该序列的收敛域就是从极点向内延伸至$z=0$
  • $x[n]$是双边序列,把该序列分成右边序列与左边序列后,如果这两个序列的z变换的收敛域有重合的部分,则该序列z变换的收敛域呈圆环状
  • $x[n]$是双边序列,把该序列分成右边序列与左边序列后,如果这两个序列的z变换的收敛域没有重合的部分,则该序列z变换不存在收敛域
  • $x[n]$是有限长序列,那么该序列的z变换必定在有限的范围内收敛

图中阴影部分为收敛域,其中红色圆圈是$|z| = r = 1$,即傅里叶变换,如果z变换的收敛域包含$r=1$的圆圈,就表明该序列的傅里叶变换收敛。

z变换例子

考虑一个为两个实指数和的信号

$x[n] = \left(\frac{1}{2}\right)^n u[n]+\left(-\frac{1}{3}\right)^n u[n]$

其z变换为

$\begin{align*}
X(z) &= \sum_{n=-\infty}^{\infty}\left\{ \left(\frac{1}{2} \right )^n u[n]+\left(-\frac{1}{3} \right )^n u[n] \right \}z^{-n}\\
&=\sum_{n=-\infty}^{\infty}\left(\frac{1}{2} \right )^n u[n]z^{-n}+\sum_{n=-\infty}^{\infty}\left(-\frac{1}{3} \right )^n u[n]z^{-n}\\
&=\sum_{n=0}^{\infty}\left(\frac{1}{2}z^{-1} \right )^n +\sum_{n=0}^{\infty}\left(-\frac{1}{3}z^{-1} \right )^n \\
&=\frac{1}{1-\frac{1}{2}z^{-1}}+\frac{1}{1+\frac{1}{3}z^{-1}} \quad Geometric\ Series\\
&=\frac{2z\left(z-\frac{1}{12} \right )}{\left(z-\frac{1}{2} \right )\left(z+\frac{1}{3} \right )}
\end{align*}$

为了使z变换收敛,必须满足条件

$\left\{\begin{matrix}
\left| \frac{1}{2}z^{-1}\right|&<&1\\
\left| -\frac{1}{3}z^{-1}\right|&<&1
\end{matrix}\right.$

$\left\{\begin{matrix}
\left| z\right|&>&\frac{1}{2}\\
\left| z\right|&>&\frac{1}{3}
\end{matrix}\right.$

由此可得到收敛域为$|z|>\frac{1}{2}$。观察z变换的结果,可以发现:

当$z=\frac{1}{2}$或者$z=-\frac{1}{3}$时,z变换趋于无穷,因此这两个点为极点

当$z=0$或者$z=\frac{1}{12}$时,z变换为0,因此这两个点为零点

[离散时间信号处理学习笔记] 7. z变换的更多相关文章

  1. [离散时间信号处理学习笔记] 10. z变换与LTI系统

    我们前面讨论了z变换,其实也是为了利用z变换分析LTI系统. 利用z变换得到LTI系统的单位脉冲响应 对于用差分方程描述的LTI系统而言,z变换将十分有用.有如下形式的差分方程: $\displays ...

  2. [离散时间信号处理学习笔记] 9. z变换性质

    z变换描述 $x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow}X(z) ,\quad ROC=R_x$ 序列$x[n]$经过z变换后得到复变函数$X(z ...

  3. [离散时间信号处理学习笔记] 8. z逆变换

    z逆变换的计算为下面的复数闭合曲线积分: $x[n] = \displaystyle{\frac{1}{2\pi j}}\oint_{C}X(z)z^{n-1}dz$ 式中$C$表示的是收敛域内的一条 ...

  4. [离散时间信号处理学习笔记] 3. 一些基本的LTI系统

    首先我们需要先对离散时间系统进行概念上的回顾: $y[n] = T\{ x[n] \}$ 上面的式子表征了离散时间系统,也就是把输入序列$x[n]$,映射称为$y[n]$的输出序列. 不过上述式子也可 ...

  5. SharpGL学习笔记(六) 裁剪变换

    在OpenGL中,除了视景体定义的6个裁剪平面(上下左右前后)外, 用户还可以定义一个或者多个附加的裁剪平面,以去掉场景中无关的目标. 附加平面裁剪函数原型如下: ClipPlane(OpenGL.G ...

  6. SharpGL学习笔记(五) 视口变换

    视口变换主是将视景体内投影的物体显示到二维的视口平面上. 在计算机图形学中,它的定义是将经过几何变换, 投影变换和裁剪变换后的物体显示于屏幕指定区域内. 前面我们讨论过的透视投影, 正射投影, 它们都 ...

  7. SharpGL学习笔记(七) OpenGL的变换总结

    笔者接触OpenGL最大的困难是: 经常调试一份代码时, 屏幕漆黑一片, 也不知道结果对不对,不知道如何是好! 这其实就是关于OpenGL"变换"的基础概念没有掌握好, 以至于对& ...

  8. z 变换

    1. z 变换 单位脉冲响应为 \(h[n]\) 的离散时间线性时不变系统对复指数输入 \(z^n\) 的响应 \(y[n]\) 为 \[ \tag{1} y[n] = H(z) z^{n}\] 式中 ...

  9. 数字信号处理--Z变换,傅里叶变换,拉普拉斯变换

    傅立叶变换.拉普拉斯变换.Z变换最全攻略 作者:时间:2015-07-19来源:网络       傅立叶变换.拉普拉斯变换.Z变换的联系?他们的本质和区别是什么?为什么要进行这些变换.研究的都是什么? ...

随机推荐

  1. Generative Adversarial Nets[Theory&MSE]

    本文来自<deep multi-scale video prediction beyond mean square error>,时间线为2015年11月,LeCun等人的作品. 从一个视 ...

  2. SQL Server中UPDATE和DELETE语句结合INNER/LEFT/RIGHT/FULL JOIN的用法

    在SQL Server中,UPDATE和DELETE语句是可以结合INNER/LEFT/RIGHT/FULL JOIN来使用的. 我们首先在数据库中新建两张表: [T_A] CREATE TABLE ...

  3. AT1219 歴史の研究

    附带权值的类区间众数问题?不是很好策啊 发现题目没有强制在线,而且也只有询问操作,那么可以考虑莫队 但是这里的莫队有一个很显著的特征,插入的时候很好维护答案,但是删除的时候不好回退 那么有没有什么办法 ...

  4. Apache Spark 2.2.0新特性介绍(转载)

    这个版本是 Structured Streaming 的一个重要里程碑,因为其终于可以正式在生产环境中使用,实验标签(experimental tag)已经被移除.在流系统中支持对任意状态进行操作:A ...

  5. 【译】参考手册-React组件

    react version: 15.4.2 React.Component 组件能够让你将UI拆分为多个独立自治并可重用的部分.在 React 中提供了 React.Component. 概述 Rea ...

  6. Java消息中间件入门笔记 - ActiveMQ篇

    入门 消息中间件带来的好处: 1)解耦:系统解耦 2)异步:异步执行 3)横向扩展 4)安全可靠 5)顺序保证 栗子: 通过服务调用让其它系统感知事件发生 系统之间高耦合 程序执行效率低 通过消息中间 ...

  7. 深入理解消息中间件技术之RabbitMQ服务

    什么叫消息队列? 消息(Message)是指在应用间传送的数据.消息可以非常简单,比如只包含文本字符串,也可以更复杂,可能包含嵌入对象. 消息队列(Message Queue)是一种应用间的通信方式, ...

  8. Redis中单机数据库的实现

    1. 内存操作层 zmalloc 系接口 redis为了优化内存操作, 封装了一层内存操作接口. 默认情况下, 其底层实现就是最简朴的libc中的malloc系列接口. 如果有定制化需求, 可以通过配 ...

  9. unixbench 物理机性能与虚拟机性能测试对比

    1.  测试方法 wget https://download.laobuluo.com/tools/UnixBench5.1.3.tgz tar -zxvf UnixBench5.1.3.tgz cd ...

  10. 循环 while

    day 2 ---------------------------------------------------把一件简单的事情做到极致,你就成功了. Day2作业及默写 1.判断下列逻辑语句的Tr ...