《机器学习实战(基于scikit-learn和TensorFlow)》第六章内容学习心得
本章讲决策树
决策树,一种多功能且强大的机器学习算法。它实现了分类和回归任务,甚至多输出任务。
决策树的组合就是随机森林。
本章的代码部分不做说明,具体请到我的GitHub上自行获取。
决策树的每个节点都是一种属性的判断,每个分支是判断结果的输出,是一种监督学习的算法。
决策树的类别有很多,最广泛使用的决策树的生成算法是CART(Classification And Regression Tree)。
- CART:
首先,使用单个特征k和阈值h将训练集分为两个子集。对于上述两个参数的选择,需要经过搜索算法确定。
然后,重复上述操作,继续分裂子集,直到达到最大深度。
- 正则化
决策树极少对训练数据做假设,但是不加限制,总会过拟合。我们需要对过拟合的决策树进行正则化处理。我们可以使用max_depth、min_samples_leaf、min_samples_split等一系列的超参数进行控制。还有一种方式可以控制,就是先不控制决策树的生长,最后进行剪枝作业。若一个节点的子节点全部为叶节点,则删除该节点,直到全部节点处理完毕。
- 回归
决策树可以进行回归任务。与分类任务相比,差别在于每个节点不是预测的类别,而是预测一个值。每个分支节点预测的值永远等于该节点内实力目标的平均值。算法的目标就是尽可能的将最多的实例接近预测值。同时CART算法分裂方式就是最小化MSE。
- 不稳定性
决策树是不稳定的。它对训练集的旋转很敏感。
《机器学习实战(基于scikit-learn和TensorFlow)》第六章内容学习心得的更多相关文章
- 《机器学习实战(基于scikit-learn和TensorFlow)》第五章内容学习心得
本章在讲支持向量机(Support Vector Machine). 支持向量机,一个功能强大的机器学习模型,能够执行线性或非线性数据的分类.回归甚至异常值检测的任务.它适用于中小型数据集的分类. 线 ...
- 《机器学习实战(基于scikit-learn和TensorFlow)》第七章内容学习心得
本章主要讲述了“集成学习”和“随机森林”两个方面. 重点关注:bagging/pasting.boosting.stacking三个方法. 首先,提出一个思想,如果想提升预测的准确率,一个很好的方法就 ...
- 分享《机器学习实战基于Scikit-Learn和TensorFlow》中英文PDF源代码+《深度学习之TensorFlow入门原理与进阶实战》PDF+源代码
下载:https://pan.baidu.com/s/1qKaDd9PSUUGbBQNB3tkDzw <机器学习实战:基于Scikit-Learn和TensorFlow>高清中文版PDF+ ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- 机器学习实战:基于Scikit-Learn和TensorFlow 读书笔记 第6章 决策树
数据挖掘作业,要实现决策树,现记录学习过程 win10系统,Python 3.7.0 构建一个决策树,在鸢尾花数据集上训练一个DecisionTreeClassifier: from sklearn. ...
- 机器学习实战:基于Scikit-Learn和TensorFlow 第5章 支持向量机 学习笔记(硬间隔)
数据挖掘作业,需要实现支持向量机进行分类,记录学习记录 环境:win10,Python 3.7.0 SVM的基本思想:在类别之间拟合可能的最宽的间距,也叫作最大间隔分类 书上提供的源代码绘制了两个图, ...
- 集成算法(chapter 7 - Hands on machine learning with scikit learn and tensorflow)
Voting classifier 多种分类器分别训练,然后分别对输入(新数据)预测/分类,各个分类器的结果视为投票,投出最终结果: 训练: 投票: 为什么三个臭皮匠顶一个诸葛亮.通过大数定律直观地解 ...
- 【.NET Core项目实战-统一认证平台】第十六章 网关篇-Ocelot集成RPC服务
[.NET Core项目实战-统一认证平台]开篇及目录索引 一.什么是RPC RPC是"远程调用(Remote Procedure Call)"的一个名称的缩写,并不是任何规范化的 ...
随机推荐
- mysql执行sql语句过程
开发人员基本都知道,我们的数据存在数据库中(目前最多的是mysql和oracle,由于作者更擅长mysql,所以这里默认数据库为mysql),服务器通过sql语句将查询数据的请求传入到mysql数据库 ...
- 探索未知种族之osg类生物---渲染遍历之裁剪三
前言 在osgUtil::CullVisitor,我们发现apply函数的重载中,有CullVisitor::apply(Group& node),CullVisitor::apply(Swi ...
- Xamarin.Android 报错问题
如果程序无法调试,输出中提示:(无法连接到logcat,GetProcessId 返回了:0) https://yq.aliyun.com/articles/618738
- 3D Graph Neural Networks for RGBD Semantic Segmentation
3D Graph Neural Networks for RGBD Semantic Segmentation 原文章:https://www.yuque.com/lart/papers/wmu47a ...
- 生信分析常用脚本(二)--SOAPdenovo
1.SOAPDenovo配置文件示例 软件下载安装和使用:http://soap.genomics.org.cn/soapdenovo.html asm.cfg #maximal read lengt ...
- yii2.0 邮件发送如何配置
邮件发送配置: 打开配置文件将下面代码添加到 components => [...]中(例:高级版默认配置在/common/config/main-local.php) 'mai ...
- GUI学习之十——QFrame和的QAbstractScrollArea学习总结
上一章我们学习了单行的文本框QLineEdit类,下面我们要为多行的文本框的学习坐下准备,总结一下QFrame类和QAbstractScrollArea类 一.QFrame类 1.描述 QFrame的 ...
- java.sql.SQLException: Field 'id' doesn't have a default value
1:id 列要设置成自增,自动赋值 java.sql.SQLException: Field 'id' doesn't have a default value at com.mysql.jdbc.S ...
- Chapter5_初始化与清理_数组初始化与可变参数列表
一.数组初始化 数组是相同类型的,用一个标识符名称封装到一起的一个对象序列或基本类型数据序列.编译器是不允许指定数组的长度的,当使用语句int[] a时,拥有的只是一个符号名,即一个数组的引用,并不拥 ...
- 无法获得锁 /var/lib/dpkg/lock - open
关于 apt-get update 更新的时候出现 无法获得锁 /var/lib/dpkg/lock - open 解决 直接删除这个锁文件即可: sudo rm /var/lib/dpkg/lock ...