分析

首先考虑相邻柱子之间没有浮台。

记前 \(m-1\) 个盘子为 x, 第 \(m\) 个盘子为 y,有如下过程:\(x\rightarrow C, y\rightarrow B, x\rightarrow A, y\rightarrow C, x \rightarrow C\) 。

写出递推式:\(f(m)=f(m-1)+1+f(m-1)+1+f(m-1)\) 。

将递推式展开,容易得到:\(f(m-1)=3^{m-1}-1\) 。

发现如果第 \(X\) 步要取 \(m\) 的话就只有两个位置,分别是 \(X=3^{m-1}\) 和 \(X=2\times 3^{m-1}\) 。

什么时候可以取到 \(m-1\) ?考虑将递推式中的 \(f(m-1)\) 展开一层,容易发现当且仅当 \(3^{m-2}|X\) 且 \(3^{m-1}\nmid X\) 时,答案是 \(m-1\) 。所以可以直接用 \(X\) 不断整除三直到有余数,答案就是合法整除的次数+1。

实际有浮台可以转化成没有浮台,令两段为 L, R, 因为我们操作的序列一定形如 LRLRLRLR ,所以可以根据给定的 \(X\) 对 \(n-1\) 作除法得到的商和余数得到没有浮台模型下的步数。

复杂度 \(O(q*len*30)\),\(len\) 是大整数长度。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
#define rep(i, a, b) for(int i = a; i <= b; ++i)
#define pb push_back
#define re(x) memset(x, 0, sizeof x)
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
return x * f;
}
template <typename T> inline bool Max(T &a, T b){return a < b ? a = b, 1 : 0;}
template <typename T> inline bool Min(T &a, T b){return a > b ? a = b, 1 : 0;}
const int N = 1e3 + 7;
int n, m, k, q;
char s[N];
struct num {
int x[N], l;
num(){memset(x, 0, sizeof x); l = 0;}
num(int a){x[0] = a, l = 1;}
void read() {
scanf("%s", s);
l = strlen(s);
for(int i = 0; i < l; ++i) x[i] = s[l - i - 1] - '0';
}
pair<num, LL> operator /(LL f) {
num res;
LL rest = 0;
for(int i = l - 1; ~i; --i) {
rest = rest * 10 + x[i];
res.x[i] = rest / f;
if(!res.l && res.x[i])
res.l = i + 1;
rest %= f;
}
if(!res.l) res.l = 1;
return make_pair(res, rest);
}
num operator +(num rhs) {
num res;
for(int i = 0; i < min(rhs.l, l); ++i) res.x[i] = x[i] + rhs.x[i];
for(int i = min(rhs.l, l); i < max(rhs.l, l); ++i) {
if(l > i) res.x[i] += x[i];
if(rhs.l > i) res.x[i] += rhs.x[i];
}
res.l = max(rhs.l, l);
for(int i = 0; i < res.l; ++i) res.x[i + 1] += res.x[i] / 10, res.x[i] %= 10;
for(; res.x[res.l]; ++res.l) {
res.x[res.l + 1] += res.x[res.l] / 10;
res.x[res.l] %= 10;
}
return res;
}
}A, B;
int main() {
n = gi(), m = gi(), k = gi(), q = gi();
while(q--) {
A.read();
pair<num, LL> f = A / (n - 1);
B = f.first;
B = B + B;
if(f.second == 0);
else if(f.second < k) B = B + num(1);
else B = B + num(2);
int cnt = 1;
while(1) {
f = B / 3;
if(f.second == 0) ++cnt;
else break;
B = f.first;
}
printf("%d\n", cnt);
}
return 0;
}

SCOI2019d1t1平台跳跃[高精]的更多相关文章

  1. Linux 高精確的時序(sleep, usleep,nanosleep) from:http://blog.sina.com.cn/s/blog_533ab41c0100htae.html

    Linux 高精確的時序(sleep, usleep,nanosleep) (2010-04-14 17:18:26) 转载▼ 标签: 杂谈 分类: linux 首先, 我会说不保证你在使用者模式 ( ...

  2. 2020云栖大会智慧出行专场:聚焦高精地图/算法、智能模型、自动驾驶、AR导航

    2020云栖大会将于9月17日-18日在线举行,届时将通过官网为全球科技人带来前沿科技.技术产品.产业应用等领域的系列重要分享.   阿里巴巴高德地图携手合作伙伴精心筹备了“智慧出行”专场.我们将为大 ...

  3. 高精地图技术专栏 | 基于空间连续性的异常3D点云修复技术

    1.背景 1.1 高精资料采集 高精采集车是集成了测绘激光.高性能惯导.高分辨率相机等传感器为一体的移动测绘系统.高德高精团队经过多年深耕打造的采集车,具有精度高.速度快.数据产生周期短.自动化程度高 ...

  4. WEB 三维引擎在高精地图数据生产的探索和实践

    1. 前言 高精地图(High Definition Map)作为自动驾驶安全性不可或缺的一部分,能有效强化自动驾驶的感知能力和决策能力,提升自动驾驶的等级.对于自动驾驶来说,高精地图主要是给机器用的 ...

  5. c++ 普通高精除高精

    //codevs3118 高精度练习之除法 //打出了高精除高精,内心有点小激动. //还记得已开始学的时候非常难打 #include<cstdio>#include<cstring ...

  6. c++普通高精加

    //作为一名蒟蒻,还请诸位不要吐槽. //第一次打c++高精加,内心有点小激动. //为codevs3116 高精度练习之加法 //程序太简单,就不打注释了. #include<cstdio&g ...

  7. BZOJ_1002_[FJOI2007]_轮状病毒_(递推+高精)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1002 )*&*(^&*^&*^**()*) 1002: [FJOI20 ...

  8. bzoj 3287: Mato的刷屏计划 高精水题 && bzoj AC150

    3287: Mato的刷屏计划 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 124  Solved: 43[Submit][Status] Desc ...

  9. codevs 3119 高精度练习之大整数开根 (各种高精+压位)

    /* codevs 3119 高精度练习之大整数开根 (各种高精+压位) 二分答案 然后高精判重 打了一个多小时..... 最后还超时了...压位就好了 测试点#1.in 结果:AC 内存使用量: 2 ...

随机推荐

  1. Android 直接修改dex破解

    直接修改dex破解 一.编写一个简单的验证程序 (1)MainActivity: protected void onCreate(BundlesavedInstanceState) { super.o ...

  2. Android面试题总结(不定期更新、附答案)

    1.Activity的启动模式? activity一共有4种启动模式:standard.singleTop singleTask .singleInstance standard:(标准模式)默认的就 ...

  3. Android开发利器之Data Binding Compiler V2 —— 搭建Android MVVM完全体的基础

    原创声明: 该文章为原创文章,未经博主同意严禁转载. 前言: Android常用的架构有:MVC.MVP.MVVM,而MVVM是唯一一个官方提供支持组件的架构,我们可以通过Android lifecy ...

  4. chrome正确的打开方式

    1:修改默认的搜索引擎 原因是中国不能使用Google浏览器,所以需要对其默认的搜索引擎进行改造:   三个点/设置/修改默认搜索引擎     2:使用插件;   右上角的省略号小点/更多工具/扩展应 ...

  5. MVC框架与三层架构

    MVC框架 介绍: MVC全名Model View Controller Model:模型的意思,代表业务模型 View:视图的意思,代表用户界面 Controller:控制器的意思,控制器接受用户的 ...

  6. MySQL 基本语句(2)

    1.创建数据库 :create database 名称 [charset 字符集 collate 校对规则] ;  如: drop database if exists `mydb` ; # 若存在就 ...

  7. 机器学习之EM算法(五)

    摘要 EM算法全称为Expectation Maximization Algorithm,既最大期望算法.它是一种迭代的算法,用于含有隐变量的概率参数模型的最大似然估计和极大后验概率估计.EM算法经常 ...

  8. 【MM系列】SAP MM 非限制/可用库存

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP MM 非限制/可用库存   ...

  9. Windows Server 2016-清理残留域控信息

    本章紧接上文,当生产环境中域控出现问题无法修复以后,一方面我们需要考虑抢夺FSMO角色,另一方面我们需要考虑的问题是清理当前域控的残留信息,以防止残留数据信息导致用户验证或者解析异常等问题.本章讲到如 ...

  10. 基于centOS7:新手篇→nginx安装

    一.首先安装编译工具和库 #安装make zlib gcc OpenSSL yum -y install make zlib zlib-devel gcc-c++ libtool openssl op ...