引言

  • 最近专业课在学信息隐藏与数字水印,上到了变换域隐藏技术,提到了其中的DCT变换,遂布置了一个巨烦人的作业,让手动给两个\(8\times8\)的矩阵做二维DCT变换,在苦逼的算了一小时后,我决定放弃,转而决定写脚本来解决,\((๑•̀ㅂ•́)و✧\),正好看网上好像只有matlab的脚本,好像没人用Python来写这个,遂打算搞一个(你就是纯粹为了偷懒不做作业\((* ̄rǒ ̄))\)

二维DCT变换原理

  • 还是要普及一下的嘛,毕竟让我头疼了一下午的东西,当然也要好好给你们分享一下啦ԅ(¯﹃¯ԅ)

  • DCT(Discrete Cosine Transform),又叫离散余弦变换,它的第二种类型,经常用于信号和图像数据的压缩。经过DCT变换后的数据能量非常集中,一般只有左上角的数值是非零的,也就是能量都集中在离散余弦变换后的直流和低频部分

  • 1、一维DCT变换

    要弄懂二维离散余弦变换,首先我们需要先了解它在一维下的情况,具体表达式如下:

    \(F(0)=\dfrac{1}{\sqrt{N}}\sum_{x=0}^{N-1} f(x)\) \(...........1\)

    \(F(u)=\sqrt{\dfrac{2}{N}}\sum_{x=0}^{N-1} f(x) \cos{\dfrac{(2x+1)u\pi}{2N}}\) \(...........2\)

    式中\(F(u)\)是第\(u\)个余弦变换值,\(u\)是广义频率变量,\(u=1,2,….,N-1;f(x)\)是时域\(N\)点序列。\(x= 1,2,….,N-1;\)

  • 2、二维DCT变换

    二维离散余弦变换可由下列表达式表示:

    \(F(0,0)=\dfrac{1}{N}\sum_{x=0}^{N-1}\sum_{y=0}^{N-1} f(x,y)\) \(...........3\)

    \(F(0,v)=\dfrac{\sqrt{2}}{N}\sum_{x=0}^{N-1}\sum_{y=0}^{N-1} f(x,y) \cdot \cos{\dfrac{(2y+1)v\pi}{2N}}\) \(...........4\)

    \(F(u,0)=\dfrac{\sqrt{2}}{N}\sum_{x=0}^{N-1}\sum_{y=0}^{N-1} f(x,y) \cdot \cos{\dfrac{(2x+1)u\pi}{2N}}\) \(...........5\)

    \(F(u,v)=\dfrac{2}{N}\sum_{x=0}^{N-1}\sum_{y=0}^{N-1} f(x,y) \cdot \cos{\dfrac{(2x+1)u\pi}{2N}}\cdot \cos{\dfrac{(2y+1)v\pi}{2N}}\) \(...........6\)

    \(6\)是二维离散余弦变换的正变换公式,其中\(f(x,y)\)是空间域一个\(N*N\)的二维向量元素,即一个\(N*N\)的矩阵,\(x,y = 0,1,2,…,N-1;F(U,V)\)是经计算后得到的变换域矩阵,\(u,v = 0,1,2,….,N-1\).求和可分性是二维离散余弦变换的一个重要特征,因此我们可以用下式表示\(6\):

    \(F(u,v)=\dfrac{2}{N}\sum_{x=0}^{N-1} \cdot \cos{\dfrac{(2x+1)u\pi}{2N}}{\sum_{y=0}^{N-1} f(x,y) }\cdot \cos{\dfrac{(2y+1)v\pi}{2N}} ..........7\)

    由一维和二维的离散余弦变换公式性质可以推导得到二维离散余弦变换也可以写成矩阵相乘形式:

    \(F=A[f(x,y)A^{T}]..............8\)

  • \(A\)为一维离散余弦变换的变换系数矩阵,\(A^{T}\)是\(A\)的转置矩阵

  • 对图像进行二维离散余弦变换\((2D-DCT)\)的步骤

    1.获得图像的二维数据矩阵\(f(x,y)\);

    2.求离散余弦变换的系数矩阵\(A\);

    3.求系数矩阵对应的转置矩阵\(A^{T}\);

    4.根据公式\(F=A\times[f(x,y)]\times A^{T}\)计算离散余弦变换;

  • 注:公式的大致推导,由于\(A\)都是正交阵,所以\(A^{-1}=A^{T}\),故\(Y=A\times[f(x,y)]\times A^{T} ,f(x,y)=A^{T}\times Y \times A=A^{T}\times A\times[f(x,y)]\times A^{T}\times A\)

参考链接:https://www.cnblogs.com/latencytime/p/10228938.html

参考链接:https://blog.csdn.net/allen_sdz/article/details/83279210

Python编程实现

  • 大家注意上述的第\(8\)个式子,将变换的两个\(\sum_{i=0}^n\)转变成了变换矩阵和转置矩阵以及代转换矩阵之间乘积的问题(注意这里的乘是指的叉乘)
  • 遂可以发现\(DCT\)后的矩阵应等于\(A\times X \times A^{T}\)
  • 此外,对于\(x,y\)同时为0的情况,其参数要单独考虑
  • 大致的思路就是,由于直接计算变换比较繁琐,所以我们就先对于一个单位阵进行操作运算,将其变成一个DCT的变换矩阵,而后在与代算矩阵和转置矩阵叉乘即可。
  • 至此我们就可以着手写脚本了,这里主要是用了两个库numpymath
# -*- coding:utf-8 -*-
# Author:Konmu
# DCT二维变换 from numpy import array as matrix, arange,zeros,transpose,matmul,ones
from math import sqrt,cos,pi '''
作业代转化矩阵1
a=matrix([[0,255,0,255,0,255,0,255],
[255,0,255,0,255,0,255,0],
[0,255,0,255,0,255,0,255],
[255,0,255,0,255,0,255,0],
[0,255,0,255,0,255,0,255],
[255,0,255,0,255,0,255,0],
[0,255,0,255,0,255,0,255],
[255,0,255,0,255,0,255,0]])
'''
a=ones((8,8))#生成单位阵
for i in range(8):
a[i]=matrix([128]*8)
# 生成全是128的矩阵(作业代转化矩阵2)
'''
测试数据
a=matrix([[61,19,50,20],
[82,26,61,45],
[89,90,82,43],
[93,59,53,97]])
'''
A=zeros((8,8))#生成0矩阵
shape=a.shape[1]#获取维数
for i in range(8):
for j in range(8):
if(i == 0):
x=sqrt(1/shape)
else:
x=sqrt(2/shape)
A[i][j]=x*cos(pi*(j+0.5)*i/shape)#与维数相关 A_T=A.transpose()#矩阵转置
Y1=matmul(A,a)#矩阵叉乘
Y=matmul(Y1,A_T)
print(Y)
'''
想要近似值可以尝试这样输出
for i in range(shape):
for j in range(shape):
print('{:^8.4f}'.format(Y[i][j]),end='\n')
print()
'''
  • 结果:

    0和255的对称矩阵



    128的单元素矩阵



    测试矩阵

结语

  • ok,完美撒花,结束,交作业喽ヾ(≧O≦)〃嗷~C

二维DCT变换 | Python实现的更多相关文章

  1. 二维DCT变换

    DCT(Discrete Consine Transform),又叫离散余弦变换,它的第二种类型,经常用于信号和图像数据的压缩.经过DCT变换后的数据能量非常集中,一般只有左上角的数值是非零的,也就是 ...

  2. DCT变换、DCT反变换、分块DCT变换

    一.引言 DCT变换的全称是离散余弦变换(Discrete Cosine Transform),主要用于将数据或图像的压缩,能够将空域的信号转换到频域上,具有良好的去相关性的性能.DCT变换本身是无损 ...

  3. python创建与遍历List二维列表

    python创建与遍历List二维列表 觉得有用的话,欢迎一起讨论相互学习~Follow Me python 创建List二维列表 lists = [[] for i in range(3)] # 创 ...

  4. Python 二维码解码

    二维码解析 Python中关于二维码解析的现成模块有很多,比较著名的就是Zbar以及ZXing.然而很不幸的是,官方的版本都是支持到python2.x,下面是在python2.x的例子: import ...

  5. 使用Python第三方库生成二维码

    本文主要介绍两个可用于生成二维码的Python第三方库:MyQR和qrcode. MyQR的使用: 安装: pip install MyQR 导入: from MyQR import myqr imp ...

  6. Python用MyQR生成自定义个性二维码

    MyQR是一个能够生成自定义二维码的python第三方库,根据需要能够生成普通二维码.带背景图片的艺术二维码.动态二维码. 1.MyQR安装 安装非常简单,直接用pip install MyQR,需要 ...

  7. 第三百二十节,Django框架,生成二维码

    第三百二十节,Django框架,生成二维码 用Python来生成二维码,需要qrcode模块,qrcode模块依赖Image 模块,所以首先安装这两个模块 生成二维码保存图片在本地 import qr ...

  8. Python 创建本地服务器环境生成二维码

    一. 需求 公司要做一个H5手机端适配页面,因技术问题所以H5是外包的,每次前端给我们源码,我们把源码传到服务器让其他人访问看是否存在bug,这个不是很麻烦吗?有人说,可以让前端在他们的服务器上先托管 ...

  9. Python生成二维码脚本

    简单的记录下二维码生成和解析的Python代码 依赖下面三个包: PIL(图像处理包,安装:pip install PIL) qrcode(二维码生成包,安装:pip install qrcode) ...

随机推荐

  1. VUE 后台管理系统权限控制

    谈一谈VUE 后台管理系统权限控制 前端权限从本质上来讲, 就是控制视图层的展示,比如说是某个页面或者某个按钮,后端权限可以控制某个用户是否能够查询数据, 是否能够修改数据等操作,后端权限大部分是基于 ...

  2. 一个简单的wed服务器SHTTPD(1)————命令行和文件配置解析

    开始学习<LInux网络编程>中的综合案例,虽然代码书上有,还是自己打一下加深理解和印象. 主要有两个函数,完成命令行的解析,另一个实现配置文件的解析,注释还是比较丰富的哦. //star ...

  3. Jmeter的简单使用

    前言 对于jmeter的使用有很多内容,本章节只是简单介绍jmeter的两个方面的内容:一个是使用jmeter模拟postman发送http请求,一个是使用jmete进行压力测试. 更多的内容请参考官 ...

  4. SQL SERVER 函数举例

    需求说明 将字符串按照指定的分隔符进行分割,并将结果按照从后往前的顺序倒序排列,拼接后的结果用‘/’符连接.(也可以按照指定符号分割为多个列,修改最后一部分即可) 创建测试表及数据 /* 创建一张测试 ...

  5. leetcode_课程表(BFS、拓扑排序)

    题目描述: 你这个学期必须选修 numCourse 门课程,记为 0 到 numCourse-1 .在选修某些课程之前需要一些先修课程. 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹 ...

  6. javaweb学习之路(1)request

    1.本次练习写一个简单的注册页面 准备工作:首先搭建好服务器tomcat环境,使用的编译软件是eclipse 2.在eclipse中创建一个web工程 3.在webContent文件夹下创建一个reg ...

  7. PHP正则表达式语法汇总

    首先,让我们看看两个特别的字符:'^' 和 ‘$' 他们是分别用来匹配字符串的开始和结束,一下分别举例说明"^The": 匹配以 "The"开头的字符串;&qu ...

  8. 2.C#Panel扩展控件

    1.解决方案下添加新建项目新建类库 2. 在项目下添加新建项选择新建组件类 3.先引用,然后导入两个命名空间 4.因为是扩展控件,把继承自Component改成继承自Panel using Syste ...

  9. 1、Fiddler基础

    1.抓取https请求 前言 fiddler是一个很好的抓包工具,默认是抓http请求的,对于pc上的https请求,会提示网页不安全,这时候需要在浏览器上安装证书. 一.网页不安全 1.用fiddl ...

  10. 使用better-scroll在vue中封装自己的Scroll组件

    1. better-scroll 原理 用一张图感受: 绿色部分为 wrapper,也就是父容器,它会有固定的高度.黄色部分为 content,它是父容器的第一个子元素,它的高度会随着内容的大小而撑高 ...