#-----------------------------------------#
# R in Action (2nd ed): Chapter 15 #
# Time series #
# requires forecast, tseries packages #
# install.packages("forecast", "tseries") #
#-----------------------------------------# par(ask=TRUE) # Listing 15.1 - Creating a time series object in R
sales <- c(18, 33, 41, 7, 34, 35, 24, 25, 24, 21, 25, 20,
22, 31, 40, 29, 25, 21, 22, 54, 31, 25, 26, 35)
tsales <- ts(sales, start=c(2003, 1), frequency=12)
tsales
plot(tsales) start(tsales)
end(tsales)
frequency(tsales) tsales.subset <- window(tsales, start=c(2003, 5), end=c(2004, 6))
tsales.subset # Listing 15.2 - Simple moving averages
library(forecast)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
ylim <- c(min(Nile), max(Nile))
plot(Nile, main="Raw time series")
plot(ma(Nile, 3), main="Simple Moving Averages (k=3)", ylim=ylim)
plot(ma(Nile, 7), main="Simple Moving Averages (k=7)", ylim=ylim)
plot(ma(Nile, 15), main="Simple Moving Averages (k=15)", ylim=ylim)
par(opar) # Listing 15.3 - Seasonal decomposition using slt()
plot(AirPassengers)
lAirPassengers <- log(AirPassengers)
plot(lAirPassengers, ylab="log(AirPassengers)")
fit <- stl(lAirPassengers, s.window="period")
plot(fit)
fit$time.series
exp(fit$time.series) par(mfrow=c(2,1))
library(forecast)
monthplot(AirPassengers, xlab="", ylab="")
seasonplot(AirPassengers, year.labels="TRUE", main="")
par(opar) # Listing 15.4 - Simple exponential smoothing
library(forecast)
fit <- HoltWinters(nhtemp, beta=FALSE, gamma=FALSE)
fit forecast(fit, 1) plot(forecast(fit, 1), xlab="Year",
ylab=expression(paste("Temperature (", degree*F,")",)),
main="New Haven Annual Mean Temperature") accuracy(fit) # Listing 15.5 - Exponential smoothing with level, slope, and seasonal components
fit <- HoltWinters(log(AirPassengers))
fit accuracy(fit) pred <- forecast(fit, 5)
pred
plot(pred, main="Forecast for Air Travel",
ylab="Log(AirPassengers)", xlab="Time")
pred$mean <- exp(pred$mean)
pred$lower <- exp(pred$lower)
pred$upper <- exp(pred$upper)
p <- cbind(pred$mean, pred$lower, pred$upper)
dimnames(p)[[2]] <- c("mean", "Lo 80", "Lo 95", "Hi 80", "Hi 95")
p # Listing 15.6 - Automatic exponential forecasting with ets()
library(forecast)
fit <- ets(JohnsonJohnson)
fit
plot(forecast(fit), main="Johnson and Johnson Forecasts",
ylab="Quarterly Earnings (Dollars)", xlab="Time") # Listing 15.7 - Transforming the time series and assessing stationarity
library(forecast)
library(tseries)
plot(Nile)
ndiffs(Nile)
dNile <- diff(Nile)
plot(dNile)
adf.test(dNile) # Listing 15.8 - Fit an ARIMA model
fit <- arima(Nile, order=c(0,1,1))
fit
accuracy(fit) # Listing 15.9 - Evaluating the model fit
qqnorm(fit$residuals)
qqline(fit$residuals)
Box.test(fit$residuals, type="Ljung-Box") # Listing 15.10 - Forecasting with an ARIMA model
forecast(fit, 3)
plot(forecast(fit, 3), xlab="Year", ylab="Annual Flow") # Listing 15.11 - Automated ARIMA forecasting
library(forecast)
fit <- auto.arima(sunspots)
fit
forecast(fit, 3)
accuracy(fit)

吴裕雄--天生自然 R语言开发学习:时间序列(续二)的更多相关文章

  1. 吴裕雄--天生自然 R语言开发学习:R语言的安装与配置

    下载R语言和开发工具RStudio安装包 先安装R

  2. 吴裕雄--天生自然 R语言开发学习:数据集和数据结构

    数据集的概念 数据集通常是由数据构成的一个矩形数组,行表示观测,列表示变量.表2-1提供了一个假想的病例数据集. 不同的行业对于数据集的行和列叫法不同.统计学家称它们为观测(observation)和 ...

  3. 吴裕雄--天生自然 R语言开发学习:导入数据

    2.3.6 导入 SPSS 数据 IBM SPSS数据集可以通过foreign包中的函数read.spss()导入到R中,也可以使用Hmisc 包中的spss.get()函数.函数spss.get() ...

  4. 吴裕雄--天生自然 R语言开发学习:使用键盘、带分隔符的文本文件输入数据

    R可从键盘.文本文件.Microsoft Excel和Access.流行的统计软件.特殊格 式的文件.多种关系型数据库管理系统.专业数据库.网站和在线服务中导入数据. 使用键盘了.有两种常见的方式:用 ...

  5. 吴裕雄--天生自然 R语言开发学习:R语言的简单介绍和使用

    假设我们正在研究生理发育问 题,并收集了10名婴儿在出生后一年内的月龄和体重数据(见表1-).我们感兴趣的是体重的分 布及体重和月龄的关系. 可以使用函数c()以向量的形式输入月龄和体重数据,此函 数 ...

  6. 吴裕雄--天生自然 R语言开发学习:基础知识

    1.基础数据结构 1.1 向量 # 创建向量a a <- c(1,2,3) print(a) 1.2 矩阵 #创建矩阵 mymat <- matrix(c(1:10), nrow=2, n ...

  7. 吴裕雄--天生自然 R语言开发学习:图形初阶(续二)

    # ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...

  8. 吴裕雄--天生自然 R语言开发学习:图形初阶(续一)

    # ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...

  9. 吴裕雄--天生自然 R语言开发学习:图形初阶

    # ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...

  10. 吴裕雄--天生自然 R语言开发学习:基本图形(续二)

    #---------------------------------------------------------------# # R in Action (2nd ed): Chapter 6 ...

随机推荐

  1. Julia1.x安装

    删除julia-1.0 $ jupyter kernelspec list Available kernels: julia-1.0 /Users/keke.zhaokk/Library/Jupyte ...

  2. 吴裕雄--天生自然 PYTHON3开发学习:元组

    tup1 = ('Google', 'Runoob', 1997, 2000) tup2 = (1, 2, 3, 4, 5, 6, 7 ) print ("tup1[0]: ", ...

  3. Java之同步代码块处理实现Runnable的线程安全问题

    /** * 例子:创建三个窗口卖票,总票数为100张.使用实现Runnable接口的方式 * * 1.问题:卖票过程中,出现了重票.错票 -->出现了线程的安全问题 * 2.问题出现的原因:当某 ...

  4. Maven--优化依赖

    Maven 会自动解析所有项目的直接依赖和传递依赖,并且根据规则正确判断每个依赖的范围,对于一些依赖冲突,也能进行调节,以确保任何一个构件只有唯一的版本在依赖中存在.在这些工作之后,最后得到的那些依赖 ...

  5. Python笔记_第二篇_面向过程_第二部分_2.路径、栈和队列、内存修改

    这一部分分三个主题进行讲解,主要为后面的模块.包.第三方库的概念补充一些相关的内容. 1. 路径(Path): 相对路径和绝对路径. 举例1:我们先导入一个os库(模块)来观察一下路径 import ...

  6. mysql SQL优化琐记之索引

    equal最好了,其次in,最后是range !=  <>  这类非操作尽量不用,它会转换为range.>都是范围查询 复合索引有左匹配原则,(clo_a,clo_b)相当建立了两个 ...

  7. 结构体初始化和new delete

    int *p; p=new int[100]; delete []p; 结构体中的指针需要初始化

  8. kotlin 单例模式

    class Single{ companion object { val instance:Single by lazy(mode = LazyThreadSafetyMode.SYNCHRONIZE ...

  9. Opencv笔记(八)——图像上的算数运算

    学习目标: 学习图像上的算术运算,加法,减法,位运算等. 学习函数cv2.add(),cv2.addWeighted() 等. 一.图像的加法 你可以使用函数 cv2.add() 将两幅图像进行加法运 ...

  10. [HNOI2019]鱼(计算几何)

    看到数据范围n<=1000,但感觉用O(n^2)不现实,所以考虑方向应该是O(n^2logn). 一种暴力做法:用vector存到1点相同的2点和到2点相同的1点,然后枚举A,枚举BC,再枚举D ...