tensorflow1.0 构建lstm做图片分类
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #this is data
mnist = input_data.read_data_sets("MNIST_data",one_hot=True) lr = 0.001
train_iters = 10000
batch_size = 128
display_step = 10 n_inputs = 28
n_steps = 28
n_hidden_unis = 128
n_classes = 10 x = tf.placeholder(tf.float32,[None,n_steps,n_inputs])
y = tf.placeholder(tf.float32,[None,n_classes]) #define weight
weights = {
#(28,128)
"in":tf.Variable(tf.random_normal([n_inputs,n_hidden_unis])),
#(128,10)
"out":tf.Variable(tf.random_normal([n_hidden_unis,n_classes]))
}
biases = {
#(128,)
"in":tf.Variable(tf.constant(0.1,shape=[n_hidden_unis,])),
#(10,)
"out":tf.Variable(tf.constant(0.1,shape=[n_classes,]))
} def RNN(X,weights,biases):
#形状变换成lstm可以训练的维度
X = tf.reshape(X,[-1,n_inputs]) #(128*28,28)
X_in = tf.matmul(X,weights["in"])+biases["in"] #(128*28,128)
X_in = tf.reshape(X_in,[-1,n_steps,n_hidden_unis]) #(128,28,128) #cell
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_unis,forget_bias=1.0,state_is_tuple=True)
#lstm cell is divided into two parts(c_state,m_state)
_init_state = lstm_cell.zero_state(batch_size,dtype=tf.float32) outputs,states = tf.nn.dynamic_rnn(lstm_cell,X_in,initial_state=_init_state,time_major = False) #outputs
# results = tf.matmul(states[1],weights["out"])+biases["out"]
#or
outputs = tf.transpose(outputs,[1,0,2])
results = tf.matmul(outputs[-1],weights["out"])+biases["out"] return results pred = RNN(x,weights,biases)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))
train_op = tf.train.AdamOptimizer(lr).minimize(loss) correct_pred = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32)) init = tf.initialize_all_variables() with tf.Session() as sess:
sess.run(init)
step = 0
while step*batch_size < train_iters:
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
batch_xs = batch_xs.reshape([batch_size,n_steps,n_inputs])
sess.run(train_op,feed_dict={x:batch_xs,y:batch_ys})
if step%20 ==0:
print(sess.run(accuracy,feed_dict={x:batch_xs,y:batch_ys}))
tensorflow1.0 构建lstm做图片分类的更多相关文章
- tensorflow1.0 构建神经网络做图片分类
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...
- tensorflow1.0 构建神经网络做非线性归回
""" Please note, this code is only for python 3+. If you are using python 2+, please ...
- tensorflow1.0 构建卷积神经网络
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os os.envi ...
- 深度学习之神经网络核心原理与算法-caffe&keras框架图片分类
之前我们在使用cnn做图片分类的时候使用了CIFAR-10数据集 其他框架对于CIFAR-10的图片分类是怎么做的 来与TensorFlow做对比. Caffe Keras 安装 官方安装文档: ht ...
- 单向LSTM笔记, LSTM做minist数据集分类
单向LSTM笔记, LSTM做minist数据集分类 先介绍下torch.nn.LSTM()这个API 1.input_size: 每一个时步(time_step)输入到lstm单元的维度.(实际输入 ...
- 5分钟Serverless实践:构建无服务器的图片分类系统
前言 在过去“5分钟Serverless实践”系列文章中,我们介绍了如何构建无服务器API和Web应用,从本质上来说,它们都属于基于APIG触发器对外提供一个无服务器API的场景.现在本文将介绍一种新 ...
- 第二十二节,TensorFlow中的图片分类模型库slim的使用、数据集处理
Google在TensorFlow1.0,之后推出了一个叫slim的库,TF-slim是TensorFlow的一个新的轻量级的高级API接口.这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦 ...
- [深度应用]·实战掌握PyTorch图片分类简明教程
[深度应用]·实战掌握PyTorch图片分类简明教程 个人网站--> http://www.yansongsong.cn/ 项目GitHub地址--> https://github.com ...
- 源码分析——迁移学习Inception V3网络重训练实现图片分类
1. 前言 近些年来,随着以卷积神经网络(CNN)为代表的深度学习在图像识别领域的突破,越来越多的图像识别算法不断涌现.在去年,我们初步成功尝试了图像识别在测试领域的应用:将网站样式错乱问题.无线领域 ...
随机推荐
- Java——类的定义
对象和类的关系:有一个学生 ,需要在表格上填写自己的信息 ,那么这个打印机就像一个类 ,打印出的表格就是一个对象,用类创建对象,学生填的信息 ,就是我所初始化的信息. 类的组成:由 属性(也叫成员变量 ...
- 一夜搞懂 | JVM 类加载机制
前言 本文已经收录到我的Github个人博客,欢迎大佬们光临寒舍: 我的GIthub博客 学习导图 一.为什么要学习类加载机制? 今天想跟大家唠嗑唠嗑Java的类加载机制,这是Java的一个很重要的创 ...
- Matlab 编程简介与实例
函数作图 二维平面曲线作图函数 plot(x, y, 's') x, y是长度相同的向量,s表示线型和颜色 如果作多条曲线在同一图上,则用函数: plot(x1, y1, 's1', x2, y2, ...
- Java中如何调用静态方法
Java中如何调用静态方法: 1.如果想要调用的静态方法在本类中,可直接使用方法名调用 2.调用其他类的静态方法,可使用类名.方法名调用 关于静态方法能被什么调用 1.实例方法 2.静态发放
- SimpleITK 和 Nibabel 读取医学图像 nii 数据(2D显示)
SimpleITK 和 Nibabel 区别在于:(nii图像可以看成2维,也可以看成三维) SimpleITK读取数据是(X,Y,Z)显示,Nibabel读取图像是(Z,Y,X)显示,也就是Niba ...
- CentOS7部署指南
1.rpm包安装---下载安装文件 wget https://pkg.jenkins.io/redhat/jenkins-2.156-1.1.noarch.rpm rpm -ivh jenkins-2 ...
- 快速搜索多个word、excel等文件中内容
背景:要在多个文件甚至文件夹中找到文件中包含的某些内容 以win10举例: 1.打开一个文件夹 2.打开文件夹选项 3.配置搜索 4.搜索文件
- selenium.webdriver元素定位失败
错误提示: Traceback (most recent call last): File "E:/PythonData/Login/venv/logIn.py", line 18 ...
- 微信小程序分享至朋友圈的方法
最近研究怎么实现微信小程序分享至朋友圈,对就是朋友圈. 微信小程序目前没有直接提供方法来将小程序分享至朋友圈,不过可以采用曲线救国的方式来达到目的. 方法分两步: 1.通过浏览器将希望分享的东西风向至 ...
- linux基础篇,数据流重定向
数据流重定向 很多时候,我们执行一些命令的时候,会在屏幕中得到这些命令的执行结果.这些叫作标准输出. 但是很多情况下,我们并不想将这些信息直接显示在屏幕上,这个时候,就得用重定向这个功能了 标准输入 ...