Scala的Higher-Kinded类型
Scala的Higher-Kinded类型
Higher-Kinded从字面意思上看是更高级的分类,也就是更高一级的抽象。我们先看个例子。
如果我们要在scala中实现一个对Seq[Int]的sum方法,应该怎么做呢?
def sum(seq: Seq[Int]): Int = seq reduce (_ + _)
sum(Vector(1,2,3,4,5)) // 结果值: 15
看起来很简单,刚刚我们实现了Seq[Int]的sum操作,那么如果我们想更进一步,我们想同时实现Seq[Int]和Seq[(Int,Int)]的操作该怎么处理呢?
不同的Seq需要不同的add实现,我们先抽象一个trait:
trait Add[T] {
def add(t1: T, T2: T): T
}
接下来我们在Add的伴生类中定义两个隐式实例,一个Add[Int], 一个Add[(Int,Int)]。
object Add {
implicit val addInt = new Add[Int] {
def add(i1: Int, i2: Int): Int = i1 + i2
}
implicit val addIntIntPair = new Add[(Int,Int)] {
def add(p1: (Int,Int), p2: (Int,Int)): (Int,Int) =
(p1._1 + p2._1, p1._2 + p2._2)
}
}
这两个隐式实例分别为Add[Int], 一个Add[(Int,Int)]实现了add方法。
最后我们可以定义sumseq方法了:
def sumSeq[T : Add](seq: Seq[T]): T =
seq reduce (implicitly[Add[T]].add(_,_))
T : Add 被称为 上下文定界( context bound), 它暗指隐式参数列表将接受Add[T] 实例。
我们看下怎么调用:
sumSeq(Vector(1 -> 10, 2 -> 20, 3 -> 30)) // 结果值: (6,60)
sumSeq(1 to 10) // 结果值: 55
sumSeq(Option(2)) // 出错!
sumSeq可以接受Seq[Int]和Seq[(Int,Int)]类型,但是无法接收Option。
对于任何一种序列,只要我们为它定义了隐式的Add 实例,那么sumSeq 方法便能计算出该序列的总和。
不过,sumSeq 仍然只支持Seq 子类型。假如容器类型并不是Seq 子类型,但是却实现了reduce 方法,我们该如何对该容器进行处理呢?我们会使用更加泛化的求和操作。这时候就需要使用到higher-kinded 类型了。
我们用M替代Seq,则可以得到M[T],M[T]就是本文介绍的Higher-Kinded类型。
trait Reduce[T, -M[T]] {
def reduce(m: M[T])(f: (T, T) => T): T
}
object Reduce {
implicit def seqReduce[T] = new Reduce[T, Seq] {
def reduce(seq: Seq[T])(f: (T, T) => T): T = seq reduce f
}
implicit def optionReduce[T] = new Reduce[T, Option] {
def reduce(opt: Option[T])(f: (T, T) => T): T = opt reduce f
}
}
为了能对Seq 和Option 值执行reduce操作,我们分别为这两类类型提供了隐式实例。为了简化起见,我们将直接使用类型中已经提供的reduce 方法执行reduce操作。
注意这里-M[T]是逆变类型,还记得我们之前的结论吗?函数的参数一定是逆变类型的。 因为M[T]是reduce(m: M[T])的参数,所以我们需要定义它为逆变类型-M[T]。
我们看一下sum方法该怎么定义:
def sum[T : Add, M[T]](container: M[T])(
implicit red: Reduce[T,M]): T =
red.reduce(container)(implicitly[Add[T]].add(_,_))
调用结果如下:
sum(Vector(1 -> 10, 2 -> 20, 3 -> 30)) // 结果值: (6,60)
sum(1 to 10) // 结果值: 55
sum(Option(2)) // 结果值: 2
sum[Int,Option](None) // 错误!
最后一个调用,我们为sum 方法添加的类型签名[Int, Opton] 会要求编译器将None 解释成Option[Int] 类型。假如不添加该类型签名,我们将得到编译错误:无法判断Option[T] 类型中的类型参数T 到底应该对应addInt 方法还是addIntIntPair 方法。
通过显式地指定类型,我们能够得到真正希望捕获的运行错误:我们不能对None 值调用reduce 方法。
在上面的sum方法中,sum[T : Add, M[T]], T: Add是上下文边界,我们也想定义M[T] 的上下文边界,比如M[T] : Reduce。
因为上下文边界只适用于包含单参数的场景,而Reduce 特征包
含两个类型参数,所以我们需要对Reduce进行改造:
trait Reduce1[-M[_]] {
def reduce[T](m: M[T])(f: (T, T) => T): T
}
object Reduce1 {
implicit val seqReduce = new Reduce1[Seq] {
def reduce[T](seq: Seq[T])(f: (T, T) => T): T = seq reduce f
}
implicit val optionReduce = new Reduce1[Option] {
def reduce[T](opt: Option[T])(f: (T, T) => T): T = opt reduce f
}
}
在新的reduce1中,只包含一个类型参数且属于higher-kinded 类型。
M[_]是上篇文章我们讲到的存在类型。T 参数被移至reduce 方法。
修改后的sum方法如下:
def sum[T : Add, M[_] : Reduce1](container: M[T]): T =
implicitly[Reduce1[M]].reduce(container)(implicitly[Add[T]].add(_,_))
我们定义了两个上下文边界,它们分别作用于Reduce1 和Add。而使用implicity 修饰的类型参数则能够区分出这两种不同的隐式值。
M[_]就是我们经常会看到的higher-kinded, higher-kinded虽然带给我们额外的抽象,但是使代码变得更加复杂。大家可以酌情考虑是否需要使用。
更多教程请参考 flydean的博客
Scala的Higher-Kinded类型的更多相关文章
- Scala函数---既存类型
语法: Type ::= InfixType ExistentialClauses ExistentialClauses ::= „forSome‟ „{‟ ExistentialDcl {semi ...
- Programming In Scala笔记-第十七章、Scala中的集合类型
本章主要介绍Scala中的集合类型,主要包括:Array, ListBuffer, Arraybuffer, Set, Map和Tuple. 一.序列 序列类型的对象中包含多个按顺序排列好的元素,可以 ...
- Programming In Scala笔记-第五章、Scala中的变量类型和操作
这一章的一些基础性的东西,主要包括Scala中的基本变量类型,以及相关的一些操作符. 一.简单类型 下表中列出Scala语言中的基本类型,以及其字节长度,其中Byte, Short, Int, Lon ...
- Scala进阶之路-Scala中的高级类型
Scala进阶之路-Scala中的高级类型 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.类型(Type)与类(Class)的区别 在Java里,一直到jdk1.5之前,我们说 ...
- Scala类型系统——高级类类型(higher-kinded types)
高级类类型就是使用其他类型构造成为一个新的类型,因此也称为 类型构造器(type constructors).它的语法和高阶函数(higher-order functions)相似,高阶函数就是将其它 ...
- Scalaz(30)- Free :Natural Tranformation ~> - map higher kinded types for free
当我们需要定义一些对应高阶类型进行相互类型转换的操作函数时,我们发现scala语言并不提供能定义这种函数的支持.举例来说:如果我们希望定义一个函数把对于任何T值的Option[T]转换成List[T] ...
- Scala学习笔记--集合类型Queue,Set
补充知识:http://www.importnew.com/4543.html 正文开始 scala.collection.immutable scala.collection.mutable 队列Q ...
- java.lang.String cannot be cast to scala.runtime.Nothing Scala中的Nothing类型
经常在写Rdd的时候, 如: val OWNER_ID=row.getAs("OWNER_ID") 等, 运行是可能会报异常 : java.lang.String cannot ...
- Scala学习笔记(2)-类型注意
Scala类型注意事项: 1.Any是绝对的根,所有的其他可实例化类型均有AnyVal和AnyRef派生. 2.所有AnyVal的类型成为值类型(所有数值类型.char.Booble和Unit) 3. ...
- Scala的类与类型
类和类型 List<String>和List<Int>类型是不一样的,但是jvm运行时会采用泛型擦除.导致List<String>和List<Int>都 ...
随机推荐
- [教程]KALI LINUX 2.0 2019 更新国内源
2019年最新版本KALI 为 KALI 2019.1 下载地址:https://www.kali.org/downloads/ 有的新入门的朋友可能会问,为什么每次都无法手动更新 例如:Update ...
- 1054 The Dominant Color (20分)(水)
Behind the scenes in the computer's memory, color is always talked about as a series of 24 bits of i ...
- Linux系统:Centos7下搭建PostgreSQL关系型数据库
本文源码:GitHub·点这里 || GitEE·点这里 一.PostgreSQL简介 1.数据库简介 PostgreSQL是一个功能强大的开源数据库系统,具有可靠性.稳定性.数据一致性等特点,且可以 ...
- python 终端带颜色的打印文本
import sys from termcolor import colored, cprint text = colored('Hello, World!', 'red', attrs=['reve ...
- 打造一款 刷Java 知识的小程序(一)
一.为什么要打造 Java要学的东西太多了,所以准备把这些知识汇总到一起,而小程序是一个比较好的入口,借助微信客户端,打开方便. 二.打造成什么样 首页展示:包含了Java各大知识点模块 知识点展示: ...
- Serverless无服务器云函数入门唠叨
B站录了个视频: https://www.bilibili.com/video/av59020925/
- Java字符串的应用
字符串的简单应用 public class join { public static void main (String args[]){ String s1 = new String (" ...
- 大数据及hadoop简要概念
大数据 大数据简要概念 指无法在一定时间范围内用常规软件工具进行捕捉.管理和处理的数据集合.需要新处理模式,才能具有更强的决策力.洞察发现力和流程优化能力的海量.高增长率和多样化的信息资产. 大数据作 ...
- Linux C++ 网络编程学习系列(1)——端口复用实现
Linux C++ 网络编程学习系列(1)--端口复用实现 源码地址:https://github.com/whuwzp/linuxc/tree/master/portreuse 源码说明: serv ...
- tf.nn.depthwise_conv2d 卷积
tf.nn.depthwise_conv2d( input, filter, strides, padding, rate=None, name=None, data_format=None ) 参数 ...