洛谷P2709 小B的询问
题目描述
小B有一个序列,包含N个1~K之间的整数。他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数。小B请你帮助他回答询问。
输入输出格式
输入格式:
第一行,三个整数N、M、K。
第二行,N个整数,表示小B的序列。
接下来的M行,每行两个整数L、R。
输出格式:
M行,每行一个整数,其中第i行的整数表示第i个询问的答案。
输入输出样例
说明
对于全部的数据,1<=N、M、K<=50000
#include<bits/stdc++.h>
using namespace std ;
#define N 50005
#define ll long long inline int read()
{
int f=,x= ; char ch;
do{ch=getchar() ; if(ch=='-')f=-;} while(ch<'' || ch>'') ;
do{x=x*+ch-'' ; ch=getchar() ; } while(ch>=''&&ch<='') ;
return x*f;
} struct Query
{
int l,r,id,pos;
bool operator <(const Query &x) const
{
if(pos==x.pos)
return r<x.r;
else
return pos<x.pos;
}
}a[N];
int b[N],n,m,K ; ll cnt[N],Ans[N];
int main()
{
n=read() ; m=read() ; K=read() ;
int size=(int)sqrt(n);///分块
for(int i= ; i<=n ; i++)
b[i]=read(); for(int i= ; i<=m ; i++)
{
a[i].l=read() ; a[i].r=read() ; a[i].id=i;
a[i].pos=(a[i].l-)/size+; ///位置
}
sort(a+,a++m);
int l=,r=; ll ans=;
for(int i= ; i<=m ; i++)
{
while(l>a[i].l) l-- , cnt[b[l]]++ , ans+=*cnt[b[l]]-;
while(r<a[i].r) r++ , cnt[b[r]]++ , ans+=*cnt[b[r]]-;
while(l<a[i].l) cnt[b[l]]-- , ans-=*cnt[b[l]]+ , l++;
while(r>a[i].r) cnt[b[r]]-- , ans-=*cnt[b[r]]+ , r--;
Ans[a[i].id]=ans;
}
for(int i= ; i<=m ; i++)
printf("%lld\n",Ans[i]);
return ;
}
洛谷P2709 小B的询问的更多相关文章
- [洛谷 P2709] 小B的询问
P2709 小B的询问 题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数 ...
- 洛谷——P2709 小B的询问
P2709 小B的询问 莫队算法,弄两个指针乱搞即可 这应该是基础莫队了吧 $x^2$可以拆成$((x-1)+1)^2$,也就是$(x-1)^2+1^2+2\times (x-1)$,那么如果一个数字 ...
- 洛谷P2709 小B的询问 莫队做法
题干 这个是用来学莫队的例题,洛谷详解 需要注意的一点,一定要分块!不然会慢很多(直接TLE) 其中分块只在排序的时候要用,并且是给问题右端点分块 再就是注意add与del函数里的操作,增加数量不提, ...
- 【刷题】洛谷 P2709 小B的询问
题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...
- 洛谷P2709 小B的询问 莫队
小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小 ...
- [题解]洛谷P2709 小B的询问
地址 是一道莫队模板题. 分析 设\(\text{vis[i]}\)表示元素\(\text{i}\)出现的次数 当一个元素进入莫队时,它对答案的贡献增加.有\(\delta Ans=(X+1)^2-X ...
- 洛谷 P2709 小B的询问(莫队)
题目链接:https://www.luogu.com.cn/problem/P2709 这道题是模板莫队,然后$i$在$[l,r]$区间内的个数就是$vis[ ]$数组 $add()$和$del()$ ...
- 莫队 [洛谷2709] 小B的询问[洛谷1903]【模板】分块/带修改莫队(数颜色)
莫队--------一个优雅的暴力 莫队是一个可以在O(n√n)内求出绝大部分无修改的离线的区间问题的答案(只要问题满足转移是O(1)的)即你已知区间[l,r]的解,能在O(1)的时间内求出[l-1, ...
- 洛谷2709 小B的询问(莫队)
题面 题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R] ...
随机推荐
- window7 和ubuntu 双系统时 ubuntu不能引导怎么办?
假如你的Ubuntu的 / 分区是sda9,又假如 /boot分区是 sda6,在终端下输入sudo -imount /dev/sda7 /mntmount /dev/sda6 /mnt/boot ( ...
- javascript使用技巧总结,不断更新...
1.使用a标签来获得当前页面相对地址的绝对地址 function getAbsoluteUrl(url){ var a; if(!a) a = document.createElement('a'); ...
- ROS naviagtion analysis: costmap_2d--StaticLayer
博客转载自:https://blog.csdn.net/u013158492/article/details/50493246 从UML中能够看到,StaticLayer主要是在实现Layer层要求实 ...
- Android中如何区分界面组件创建和销毁的类型
本文主要描述: 1.分辨系统杀掉退出还是用户主动退出2.分辨全新的创建还是系统恢复性的创建 1.分辨系统杀掉退出还是用户主动退出 当一个组件失去焦点后,系统有可能为了释放资源而杀掉这个组件,这个时候系 ...
- Luogu 4159 [SCOI2009]迷路
BZOJ 1297 应当是简单题. 发现边权的数量很小,所以我们暴力把一个点拆成$9$个点,然后把$(x, i)$到$(x, i + 1)$连边,代表转移一次之后可以走回来:对于每一条存在的边$(i, ...
- hdu1269 Tarjan强连通分量 模板(转)
#include<stdio.h> #include<iostream> #include<vector> using namespace std; ; vecto ...
- hdu 4278 Faulty Odometer(进制转换)
十进制转八进制的变形: #include<stdio.h> int main() { int n; while(scanf("%d",&n)!=EOF& ...
- <abbr> 元素的样式为显示在文本底部的一条虚线边框,当鼠标悬停在上面时会显示完整的文本(只要您为 <abbr> title 属性添加了文本)
<abbr title="World Wide Web">WWW</abbr><br><abbr title="Real Sim ...
- Android 基于google Zxing实现对手机中的二维码进行扫描
转载请注明出处:http://blog.csdn.net/xiaanming/article/details/14450809 有时候我们有这样子的需求,需要扫描手机中有二维码的的图片,所以今天实现的 ...
- C#backgroundWorker
private void button1_Click(object sender, EventArgs e) { backgroundWorker1.RunWorkerAsync(); } priva ...