2460: [BeiJing2011]元素

Time Limit: 20 Sec  Memory Limit: 128 MB
Submit: 1675  Solved: 869
[Submit][Status][Discuss]

Description

相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔
法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。
一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而
使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制
出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过
一块同一种矿石,那么一定会发生“魔法抵消”。 
  后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量
的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编
号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔
法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来
为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两
个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起
来为零。 
  并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力
等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,
并且通过实验推算出每一种矿石的元素序号。 
   现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多
有多大的魔力。

Input

第一行包含一个正整数N,表示矿石的种类数。 
  接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号
和魔力值。

Output

仅包一行,一个整数:最大的魔力值

Sample Input

3

1 10
2 20
3 30

Sample Output

50

HINT

由于有“魔法抵消”这一事实,每一种矿石最多使用一块。

如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,

则会发生魔法抵消,得不到法杖。

可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。

对于全部的数据:N ≤ 1000,Numberi ≤ 10^18

,Magici ≤ 10^4

题目要我们求出编号异或不出0的最大权值和

显然线性基可以为这样的异或问题提供很好的优化

我们按权值大到小依次插入线性基,如果插入成功,即当前线性基通过异或不能使当前编号为0,说明没有矛盾,而当前元素也是当前未插入最小的,所以可以贪心插入,最后的权值就是最大的

通过这道题,对线性基的理解更深了一步。

线性基一般解决的都是与异或有关的选择、组合问题,通常要求最值,就可以通过线性基优化,贪心选择了

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 1005,maxm = 100005,INF = 1000000000;
inline LL RD(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
LL bin[65],A[65];
int N,ans = 0;
struct node{LL id; int v;}e[maxn];
inline bool operator <(const node& a,const node& b){return a.v > b.v;}
int main(){
bin[0] = 1;REP(i,60) bin[i] = bin[i - 1] << 1;
N = RD();
REP(i,N) e[i].id = RD(),e[i].v = RD();
sort(e + 1,e + 1 + N);
for (int i = 1; i <= N; i++){
for (LL j = 60; j >= 0; j--){
if (e[i].id & bin[j]){
if (!A[j]) {A[j] = e[i].id;break;}
else e[i].id ^= A[j];
}
}
if (e[i].id) ans += e[i].v;
}
cout<<ans<<endl;
return 0;
}

BZOJ2460 [BeiJing2011]元素 【线性基】的更多相关文章

  1. [bzoj2460] [BeiJing2011]元素(线性基+贪心)

    题目大意: 有一些矿石,每个矿石有一个a和一个b值,要求选出一些矿石,b的和最大且不存在某个矿石子集它们的a的异或和为0. 解题关键:对魔力进行由大到小排序,依次加入线性基,统计即可. #includ ...

  2. [BZOJ2460][BJOI2011]元素(线性基)

    2460: [BeiJing2011]元素 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 2195  Solved: 1119[Submit][Sta ...

  3. BZOJ 2460: [BeiJing2011]元素 线性基

    2460: [BeiJing2011]元素 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力 ...

  4. BZOJ.2460.[BeiJing2011]元素(线性基 贪心)

    题目链接 线性基:https://blog.csdn.net/qq_36056315/article/details/79819714. \(Description\) 求一组矿石,满足其下标异或和不 ...

  5. B2460 [BeiJing2011]元素 线性基

    这个题是对刚才线性基的一个补充,就是中间有一些小贪心,贪心就很有意思,先按权值排序,然后就瞎搞就行了. 题干: Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们 ...

  6. BZOJ 2460 [BeiJing2011]元素 ——线性基

    [题目分析] 线性基,由于最多有63个,只需要排序之后,动态的去维护线性基即可. [代码] #include <cstdio> #include <cstring> #incl ...

  7. BZOJ-6-2460: [BeiJing2011]元素-线性基

    链接 :https://www.lydsy.com/JudgeOnline/problem.php?id=2460 思路 :线性基不唯一,所以排序 进行贪心选择,价值最大的线性基, #include& ...

  8. bzoj 2460 [BeiJing2011]元素 (线性基)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2460 题意: 给你一堆矿石,矿石有a,b两种性质,取任意个矿石,满足取得的这些矿石a性质异或 ...

  9. BZOJ2460 Beijing2011元素(线性基+贪心)

    按价值从大到小考虑每个元素,维护一个线性基,如果向其中加入该元素的编号仍然构成线性基,则将其加入. 不会证明.当做线性基的一个性质吧. #include<iostream> #includ ...

随机推荐

  1. QQ兴趣部落 大批量引流实战技巧

    兴趣部落,犹如pc端贴吧,除去盔甲,几乎大同小异. 在文章<QQ运动,新楛的马桶还在香,营销人不应摒弃>中,阿力推推对稍微僻静的平台做过简述,和QQ运动一样,兴趣部落稍显“僻静”,执行到位 ...

  2. 阅读《大型网站技术架构》,并结合"重大需求征集系统"有感

    今天阅读了<大型网站技术架构:核心原理与案例分析>的第五.六.七章.这三张主要是讲述了一个系统的可用性.伸缩性和可扩展性.而根据文中所讲述的,一个系统的可用性主要是体现在这个系统的系统服务 ...

  3. python三大神器之生成器

    生成器Generator: 本质:迭代器(所以自带了__iter__方法和__next__方法,不需要我们去实现) 特点:惰性运算,开发者自定义 在python中有三种方法来获取生成器: 1.通过生成 ...

  4. django之单表查询

    一.创建表 1.创建模型: 创建名为book的app,在book下的models.py中创建模型: from django.db import models # Create your models ...

  5. go执行外部应用

    go执行外部应用 最近想将原来用asp.net mvc写的一个公司内部网站改用beego来写,但发现其中有一个功能是,能将加密的sqlite文件进行解密,因为这个解密是不能公开的,但有些同事需要查看这 ...

  6. Altera Stratix IV 命名规则

    由于要开发基于DE4平台的应用,应该要了解一下该平台的芯片情况Stratix IV 具体型号为:Stratix IV EP4SGX230KF40C2 命名规范如下 官网资料为:https://www. ...

  7. P1794 装备运输_NOI导刊2010提高(04)

    P1794 装备运输_NOI导刊2010提高(04) 题目描述 德国放松对英国的进攻后,把矛头指向了东边——苏联.1943年初,东线的战斗进行到白热化阶段.据可靠情报,90余万德国军队在库尔斯克准备发 ...

  8. 521. [NOIP2010] 引水入城 cogs

    521. [NOIP2010] 引水入城 ★★★   输入文件:flow.in   输出文件:flow.out   简单对比时间限制:1 s   内存限制:128 MB 在一个遥远的国度,一侧是风景秀 ...

  9. 小白学习mysql 之 innodb locks

    Innodb 锁类型: Shared and Exclusive Locks Intention Locks Record Locks Gap Locks Next-Key Locks Insert ...

  10. 『Python Kivy』官方乒乓球游戏示例解析

    本篇文章用于对Kivy框架官方所给出的一个「乒乓球」小游戏的源码进行简单地解析.我会尽可能的将方方面面的内容都说清楚.在文章的最下方为官方所给出的这个小游戏的教程以及游戏源码. 由于篇幅所限,本文只简 ...