BZOJ2460 [BeiJing2011]元素 【线性基】
2460: [BeiJing2011]元素
Time Limit: 20 Sec Memory Limit: 128 MB
Submit: 1675 Solved: 869
[Submit][Status][Discuss]
Description
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔
法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。
一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而
使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制
出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过
一块同一种矿石,那么一定会发生“魔法抵消”。
后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量
的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编
号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔
法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来
为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两
个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起
来为零。
并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力
等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,
并且通过实验推算出每一种矿石的元素序号。
现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多
有多大的魔力。
Input
第一行包含一个正整数N,表示矿石的种类数。
接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号
和魔力值。
Output
仅包一行,一个整数:最大的魔力值
Sample Input
1 10
2 20
3 30
Sample Output
HINT
由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,
则会发生魔法抵消,得不到法杖。
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。
对于全部的数据:N ≤ 1000,Numberi ≤ 10^18
,Magici ≤ 10^4
。
题目要我们求出编号异或不出0的最大权值和
显然线性基可以为这样的异或问题提供很好的优化
我们按权值大到小依次插入线性基,如果插入成功,即当前线性基通过异或不能使当前编号为0,说明没有矛盾,而当前元素也是当前未插入最小的,所以可以贪心插入,最后的权值就是最大的
通过这道题,对线性基的理解更深了一步。
线性基一般解决的都是与异或有关的选择、组合问题,通常要求最值,就可以通过线性基优化,贪心选择了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 1005,maxm = 100005,INF = 1000000000;
inline LL RD(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
LL bin[65],A[65];
int N,ans = 0;
struct node{LL id; int v;}e[maxn];
inline bool operator <(const node& a,const node& b){return a.v > b.v;}
int main(){
bin[0] = 1;REP(i,60) bin[i] = bin[i - 1] << 1;
N = RD();
REP(i,N) e[i].id = RD(),e[i].v = RD();
sort(e + 1,e + 1 + N);
for (int i = 1; i <= N; i++){
for (LL j = 60; j >= 0; j--){
if (e[i].id & bin[j]){
if (!A[j]) {A[j] = e[i].id;break;}
else e[i].id ^= A[j];
}
}
if (e[i].id) ans += e[i].v;
}
cout<<ans<<endl;
return 0;
}
BZOJ2460 [BeiJing2011]元素 【线性基】的更多相关文章
- [bzoj2460] [BeiJing2011]元素(线性基+贪心)
题目大意: 有一些矿石,每个矿石有一个a和一个b值,要求选出一些矿石,b的和最大且不存在某个矿石子集它们的a的异或和为0. 解题关键:对魔力进行由大到小排序,依次加入线性基,统计即可. #includ ...
- [BZOJ2460][BJOI2011]元素(线性基)
2460: [BeiJing2011]元素 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 2195 Solved: 1119[Submit][Sta ...
- BZOJ 2460: [BeiJing2011]元素 线性基
2460: [BeiJing2011]元素 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力 ...
- BZOJ.2460.[BeiJing2011]元素(线性基 贪心)
题目链接 线性基:https://blog.csdn.net/qq_36056315/article/details/79819714. \(Description\) 求一组矿石,满足其下标异或和不 ...
- B2460 [BeiJing2011]元素 线性基
这个题是对刚才线性基的一个补充,就是中间有一些小贪心,贪心就很有意思,先按权值排序,然后就瞎搞就行了. 题干: Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们 ...
- BZOJ 2460 [BeiJing2011]元素 ——线性基
[题目分析] 线性基,由于最多有63个,只需要排序之后,动态的去维护线性基即可. [代码] #include <cstdio> #include <cstring> #incl ...
- BZOJ-6-2460: [BeiJing2011]元素-线性基
链接 :https://www.lydsy.com/JudgeOnline/problem.php?id=2460 思路 :线性基不唯一,所以排序 进行贪心选择,价值最大的线性基, #include& ...
- bzoj 2460 [BeiJing2011]元素 (线性基)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2460 题意: 给你一堆矿石,矿石有a,b两种性质,取任意个矿石,满足取得的这些矿石a性质异或 ...
- BZOJ2460 Beijing2011元素(线性基+贪心)
按价值从大到小考虑每个元素,维护一个线性基,如果向其中加入该元素的编号仍然构成线性基,则将其加入. 不会证明.当做线性基的一个性质吧. #include<iostream> #includ ...
随机推荐
- css实现未知元素宽高垂直居中和水平居中的方法
第一种:display:table-cell的方式 .container { /*父级容器*/ display:table-cell; text-align:center; vertical-alig ...
- 一次 group by + order by 性能优化分析
一次 group by + order by 性能优化分析 最近通过一个日志表做排行的时候发现特别卡,最后问题得到了解决,梳理一些索引和MySQL执行过程的经验,但是最后还是有5个谜题没解开,希望大家 ...
- 微信小程序缓存
购物车数据加入缓存,相同的商品值修改数量,然后再次加入缓存中 修改购物车的数据的时候同理,都是修改缓存数据然后加入到缓存中. 具体的使用方法看官方文档,我只是提供思路
- Scrapy之CrawlSpider
问题:如果我们想要对某一个网站的全站数据进行爬取?解决方案: 1. 手动请求的发送 2. CrawlSpider(推荐) CrawlSpider概念:CrawlSpider其实就是Spider的一个子 ...
- go web cookie和session
cookie是存储在浏览器端,session是服务器端 cookie是有时间限制的,分会话cookie和持久cookie,如果不设置时间,那周期就是创建到浏览器关闭为止.这种是会话cookie,一般保 ...
- JavaScript之this解析
1.解析器在调用函数每次都会向函数内部传递进一个隐含的参数,这个隐含的参数就是this,this指向的是一个对象,这个对象我们称为函数执行的上下文对象,根据函数的调用方式不同,this会指向不同的对象 ...
- UVA 1593 Alignment of Code(紫书习题5-1 字符串流)
You are working in a team that writes Incredibly Customizable Programming Codewriter (ICPC) which is ...
- html中显示指数、底数
在web前端开发中,经常要显示指数.底数,比如x2,loga,我们可以使用span标签,通过控制标签内字体大小,对齐方式来实现想要的效果.代码如下 <table> <tr> & ...
- PHP.38-TP框架商城应用实例-后台14-商品管理-商品扩展分类的删除、修改
商品分类删除 1.删除商品时,根据商品id删除扩展分类表数据 商品扩展分类修改 1.在控制器GoodsController.class.php/edit()中根据商品id取出对应的所有扩展分类 2.在 ...
- 联想ThinkPad S3-S440虚拟机安装,ubuntu安装,Hadoop(2.7.1)详解及WordCount运行,spark集群搭建
下载ubuntu操作系统版本 ubuntu-14.10-desktop-amd64.iso(64位) 安装过程出现错误: This kernel requires an X86-64 CPU,but ...