进程控制块,英文名(Processing Control Block),简称 PCB 。

进程控制块是系统为了管理进程设置的一个专门的数据结构,主要表示进程状态。

每一个进程都对应一个PCB来维护进程相关的信息;

在Linux中,PCB结构为task_struct;

task_struct是Linux内核的一种数据结构,它会被装载到RAM里并且包含进程的信息,每个进程都把它的信息放在task_struct这个数据结构里。

task_struct结构图:

task_struct描述:
1.进程状态:是调度和兑换的依据

linux进程的状态
内核表示  含义
TASK_RUNNING 可运行
TASK_INTERRUPTIBLE 可中断的等待状态
TASK_UNINTERRUPTIBLE 不可中断的等待状态
TASK_ZOMBIE 僵死
TASK_STOPPED 暂停
TASK_SWAPPING 换入/换出

2.标识符:描述本进程的唯一标识符,用来区别其它进程

  每个进程都有一个唯一的标识符,内核通过这个标识符来识别不同的进程,同时,进程标识符PID也是内核提供给用户程序的接口,用户程序通过PID对进程发号施令。PID是32位的无符号整数,它被顺序编号:新创建进程的PID通常是前一个进程的PID加1。然而,为了与16位硬件平台的传统Linux系统保持兼容,在Linux上允许的最大PID号是32767,当内核在系统中创建第32768个进程时,就必须重新开始使用已闲置的PID号。

各种标识符
域名 含义
pid 进程标识符
ppid 父进程
uid、gid 用户标识符、组标识符
euid、egid 有效用户标识符、有效组标识符
suid、sgid 备份用户标识符、备份组标识符
fsuid、fsgid 文件系统用户标识符、文件系统组标识符

3.进程调度信息

  调度程序利用这部分信息决定系统中哪个进程应该优先运行,并结合进程的状态信息保证系统运转的公平和高效。这一部分信息通常包括进程的类别(普通进程还是实时进程)、进程的优先级(priority)等等

进程调度信息
域名 含义
need_resched 调度标志
nice 静态优先级
counter 动态优先级
policy 调度策略
rt_priority  实时优先级

当need_resched被设置时,在“下一次的调度机会”就调用调度程序schedule()。 counter代表进程剩余的时间片,是进程调度的主要依据,也可以说是进程的动态优先级,因为这个值在不断地减少;nice是进程的静态优先级,同时也代表进程的时间片,用于对counter赋值,可以用nice()系统调用改变这个值;policy是适用于该进程的调度策略,实时进程和普通进程的调度策略是不同的;rt_priority只对实时进程有意义,它是实时进程调度的依据。

   进程调度的策略
名称 解释 适用范围
SCHED_OTHER  其它调度  普通进程
 SCHED_FIFO 先来先服务调度   实时进程
 SCHED_RR 时间片轮转调度 

4.程序计数器:程序中即将被执行的下一条指令的地址

5.内存指针:包括程序代码和进程相关数据指针,还有和其他进程共享的内存块的指针

6.与处理器相关的上下文数据:程序执行时处理器的寄存器中的数据

7.I/O状态信息:包括显示的I/O请求,分配给进程的I/O设备和被进程使用的文件列表

8.记账信息:可以包括处理器时间总和,使用的时钟数总和、时间限制、记账号等

struct task_struct
{
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
/*
   表示进程的当前状态:
TASK_RUNNING:正在运行或在就绪队列run-queue中准备运行的进程,实际参与进程调度。
TASK_INTERRUPTIBLE:处于等待队列中的进程,待资源有效时唤醒,也可由其它进程通过信号(signal)或定时中断唤醒后进入就绪队列run-queue。
TASK_UNINTERRUPTIBLE:处于等待队列中的进程,待资源有效时唤醒,不可由其它进程通过信号(signal)或定时中断唤醒。
TASK_ZOMBIE:表示进程结束但尚未消亡的一种状态(僵死状态)。此时,进程已经结束运行且释放大部分资源,但尚未释放进程控制块。
TASK_STOPPED:进程被暂停,通过其它进程的信号才能唤醒。导致这种状态的原因有二,或者是对收到SIGSTOP、SIGSTP、SIGTTIN或SIGTTOU信号的反应,或者是受其它进程的ptrace系统调用的控制而暂时将CPU交给控制进程。
TASK_SWAPPING: 进程页面被交换出内存的进程。
*/
unsigned long flags;  //进程标志,与管理有关,在调用fork()时给出
int sigpending;     //进程上是否有待处理的信号
mm_segment_t addr_limit;   //进程地址空间,区分内核进程与普通进程在内存存放的位置不同
/*用户线程空间地址: 0..0xBFFFFFFF。
内核线程空间地址: 0..0xFFFFFFFF */ struct exec_domain *exec_domain;  //进程执行域
volatile long need_resched;     //调度标志,表示该进程是否需要重新调度,若非0,则当从内核态返回到用户态,会发生调度
unsigned long ptrace;
int lock_depth;  //锁深度
long counter;   //进程的基本时间片,在轮转法调度时表示进程当前还可运行多久,在进程开始运行是被赋为priority的值,以后每隔一个tick(时钟中断)递减1,减到0时引起新一轮调 度。重新调度将从run_queue队列选出counter值最大的就绪进程并给予CPU使用权,因此counter起到了进程的动态优先级的作用
long nice;     //静态优先级
unsigned long policy;  //进程的调度策略,有三种,实时进程:SCHED_FIFO,SCHED_RR,分时进程:SCHED_OTHER
//在Linux 中, 采用按需分页的策略解决进程的内存需求。task_struct的数据成员mm 指向关于存储管理的mm_struct结构。
struct mm_struct *mm;  //进程内存管理信息
int has_cpu, processor;
unsigned long cpus_allowed;
struct list_head run_list;  //指向运行队列的指针
unsigned long sleep_time;   //进程的睡眠时间
//用于将系统中所有的进程连成一个双向循环链表,其根是init_task
//在Linux 中所有进程(以PCB 的形式)组成一个双向链表,next_task和prev_task是链表的前后向指针
  struct task_struct *next_task, *prev_task;
struct mm_struct *active_mm; //active_mm 指向活动地址空间。
struct linux_binfmt *binfmt;  //进程所运行的可执行文件的格式
int exit_code, exit_signal;
int pdeath_signal;    //父进程终止是向子进程发送的信号
unsigned long personality;
int dumpable:1;
int did_exec:1;
pid_t pid;   //进程标识符,用来代表一个进程
pid_t pgrp;  //进程组标识,表示进程所属的进程组
pid_t tty_old_pgrp;   //进程控制终端所在的组标识
pid_t session;      //进程的会话标识
pid_t tgid;
int leader;        //表示进程是否为会话主管

  //指向最原始的进程任务指针,父进程任务指针,子进程任务指针,新兄弟进程任务指针,旧兄弟进程任务指针。
struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;
struct list_head thread_group;   //线程链表

  //用于将进程链入HASH表,系统进程除了链入双向链表外,还被加入到hash表中
struct task_struct *pidhash_next;
struct task_struct **pidhash_pprev;
wait_queue_head_t wait_chldexit;   //供wait4()使用
struct semaphore *vfork_sem;     //供vfork()使用
unsigned long rt_priority;      //实时优先级,用它计算实时进程调度时的weight值

   //it_real_value,it_real_incr用于REAL定时器,单位为jiffies,系统根据it_real_value
//设置定时器的第一个终止时间.在定时器到期时,向进程发送SIGALRM信号,同时根据
//it_real_incr重置终止时间,it_prof_value,it_prof_incr用于Profile定时器,单位为jiffies。
//当进程运行时,不管在何种状态下,每个tick都使it_prof_value值减一,当减到0时,向进程发送信号SIGPROF,并根据it_prof_incr重置时间.
//it_virt_value,it_virt_value用于Virtual定时器,单位为jiffies。当进程运行时,不管在何种
//状态下,每个tick都使it_virt_value值减一当减到0时,向进程发送信号SIGVTALRM,根据it_virt_incr重置初值
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_incr;
struct timer_list real_timer;  //指向实时定时器的指针
struct tms times;         //记录进程消耗的时间
unsigned long start_time;    //进程创建的时间
long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS];//记录进程在每个CPU上所消耗的用户态时间和核心态时间
//内存缺页和交换信息:
//min_flt, maj_flt累计进程的次缺页数(Copyon Write页和匿名页)和主缺页数(从映射文件或交换
//设备读入的页面数);nswap记录进程累计换出的页面数,即写到交换设备上的页面数。
//cmin_flt, cmaj_flt,cnswap记录本进程为祖先的所有子孙进程的累计次缺页数,主缺页数和换出页面数。
//在父进程回收终止的子进程时,父进程会将子进程的这些信息累计到自己结构的这些域中
unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
int swappable:1;   //表示进程的虚拟地址空间是否允许换出
//进程认证信息
//uid,gid为运行该进程的用户的用户标识符和组标识符,通常是进程创建者的uid,gid,euid,egid为有效uid,gid
//fsuid,fsgid为文件系统uid,gid,这两个ID号通常与有效uid,gid相等,在检查对于文件系统的访问权限时使用他们。
//suid,sgid为备份uid,gid
uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
int ngroups;     //记录进程在多少个用户组中
gid_t groups[NGROUPS];  //记录进程所在的组
kernel_cap_t cap_effective, cap_inheritable, cap_permitted;//进程的权能,分别是有效位集合,继承位集合,允许位集合
int keep_capabilities:1;
struct user_struct *user;  //代表进程所属的用户
struct rlimit rlim[RLIM_NLIMITS];   //与进程相关的资源限制信息
unsigned short used_math;   //是否使用FPU
char comm[16];     //进程正在运行的可执行文件名
//文件系统信息
int link_count;
struct tty_struct *tty;  //进程所在的控制终端,如果不需要控制终端,则该指针为空
unsigned int locks; /* How many file locks are being held */
//进程间通信信息
struct sem_undo *semundo;  //进程在信号量上的所有undo操作
struct sem_queue *semsleeping;  //当进程因为信号量操作而挂起时,他在该队列中记录等待的操作
struct thread_struct thread;   //进程的CPU状态,切换时,要保存到停止进程的task_struct中
struct fs_struct *fs;     //文件系统信息,fs保存了进程本身与VFS(虚拟文件系统)的关系信息
struct files_struct *files; //打开文件信息
//信号处理函数
spinlock_t sigmask_lock; /* Protects signal and blocked */
struct signal_struct *sig; //信号处理函数
sigset_t blocked;      //进程当前要阻塞的信号,每个信号对应一位
struct sigpending pending; //进程上是否有待处理的信号
unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask;
/* Thread group tracking */
u32 parent_exec_id;
u32 self_exec_id;
spinlock_t alloc_lock; //用于申请空间时用的自旋锁。自旋锁的主要功能是临界区保护 };
  

 

  

进程控制块PCB结构体 task_struct 描述的更多相关文章

  1. 进程控制块(PCB)结构

    一.进程控制块(PCB)结构 进程控制块(PCB)是系统为了管理进程设置的一个专门的数据结构.系统用它来记录进程的外部特征,描述进程的运动变化过程.同时,系统可以利用PCB来控制和管理进程,所以说,P ...

  2. Linux中进程控制块PCB-------task_struct结构体结构

    Linux中task_struct用来控制管理进程,结构如下: struct task_struct { //说明了该进程是否可以执行,还是可中断等信息 volatile long state; // ...

  3. 进程控制块PCB结构 task_struct 描述

    注:本分类下文章大多整理自<深入分析linux内核源代码>一书,另有参考其他一些资料如<linux内核完全剖析>.<linux c 编程一站式学习>等,只是为了更好 ...

  4. Linux下的进程控制块(PCB)

    本文转载自Linux下的进程控制块(PCB) 导语 进程在操作系统中都有一个户口,用于表示这个进程.这个户口操作系统被称为PCB(进程控制块),在linux中具体实现是 task_struct数据结构 ...

  5. 进程控制块(PCB)

    用来描述和控制进程的运行的一个数据结构--进程控制块PCB(Process Control Block),是进程实体的一部分,是操作系统中最重要的记录型数据结构. PCB是进程存在的唯一标志 系统能且 ...

  6. 你好,C++(14)如何描述“一个名叫陈良乔,年龄33岁,身高173厘米,体重61.5千克的男人”——3.8 用结构体类型描述复杂的事物

    3.8  用结构体类型描述复杂的事物 利用C++本身所提供的基本数据类型所定义的变量,只能表达一些简单的事物.比如我们可以用int类型定义nAge变量表示人的年龄,用string类型定义strName ...

  7. 进程控制块PCB学习

    参考这篇文章:http://blog.csdn.net/shuizhilan/article/details/6642040 PCB(process control block),进程控制块,是我们学 ...

  8. Linux进程空间分布 & 进程控制块 PCB

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Verdana; color: #555555 } span.s1 { } Linux使用两级 ...

  9. Linux进程描述符task_struct结构体详解--Linux进程的管理与调度(一)【转】

    Linux内核通过一个被称为进程描述符的task_struct结构体来管理进程,这个结构体包含了一个进程所需的所有信息.它定义在include/linux/sched.h文件中. 谈到task_str ...

随机推荐

  1. Hibernate生成器类

    在Hibernate中,id元素的<generator>子元素用于生成持久化类的对象的唯一标识符. Hibernate框架中定义了许多生成器类. 所有的生成器类都实现了org.hibern ...

  2. 用Python和py2app写独立的Mac OS X 应用

    文/lovexiaov(简书作者)原文链接:http://www.jianshu.com/p/afb6b2b97ce9著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”. 前提 创建一个普通 ...

  3. Windows中安装Scrapy

    在linux中安装Scrapy只需要导入一些非python的支持包,在windows中安装Scrapy则是一波三折. 总之来说,主要分为以下几个步骤,可能由于系统问题(国内个人机子,甚至是小企业的机子 ...

  4. TOC之关键链项目管理遇到软件project7原则

    编著者:张克强    微博:张克强-敏捷307 软件project7原则简单介绍 美国著名软件project专家鲍伊姆(B.W.Boehm,也又另译为勃姆)在总结软件project准则和信条的基础上, ...

  5. J - 迷宫问题(BFS)

    J - 迷宫问题 Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Descriptio ...

  6. go build说明

    go build命令用于编译我们指定的源码文件或代码包以及它们的依赖包. 例如,如果我们在执行go build命令时不后跟任何代码包,那么命令将试图编译当前目录所对应的代码包.例如,我们想编译goc2 ...

  7. 巨蟒python全栈开发django4:url反向解析图解&&模板渲染

    第一部分: 1.(1)知识点回顾: django回顾: ()下载安装 输入网址,a,form表单get post,爬虫 (请求)==>django项目服务端的url(r"index/& ...

  8. Connection cannot be null when 'hibernate.dialect' not set

    严重: Exception sending context initialized event to listener instance of class [org.springframework.w ...

  9. Vue页面上实时显示当前时间,每秒更新

    有时候我们需要在页面上添加一个类似时钟的东西来实时显示当前时间,这个时候我们可以利用定时器来完成这个功能 <div id="app"> {{date}} </di ...

  10. 【题解】BZOJ3489 A Hard RMQ problem(主席树套主席树)

    [题解]A simple RMQ problem 占坑,免得咕咕咕了,争取在2h内写出代码 upd:由于博主太菜而且硬是要用指针写两个主席树,所以延后2hQAQ upd:由于博主太菜而且太懒所以他决定 ...