题面

对于字符串 \(s\) 定义一个变换 \(f(s)\) 表示, \(\forall 1\le k\le \lfloor|s|/2\rfloor\) ,将 \(s\) 中从后往前第 \(k\) 个字符插入从前往后第 \(k\) 个字符和第 \(k+1\) 个字符之间后得到的字符串,例如 \(\texttt{abcdef}\) 变换后得到 \(\texttt{afbecd}\) .

现在给出用 \(f(s)\) 变换过 \(k\) 次以后的字符串(即执行 \(k\) 次 \(s:=f(s)\)),求变换之前的字符串 .

(别骂我,这是原题面)

\(3\le |s|\le 10^3, 1\le k\le 10^9\) .

置换

这里没有群论

这里没有群论 .

这里的置换是狭义的,正经置换看 OI-Wiki(内含 Burnside,慎入)

置换

一个置换 \(p\) 定义为一个排列,置换相当于一个运算,将原来在位置 \(i\) 的东西变到位置 \(p_i\) .

置换的乘法(复合)

你对一个东西施加置换 \(p\) 然后施加置换 \(q\),就相当于施加 \(p\circ q\) .

显然新的置换 \(h=p\circ q\) 由下式直接表示:

\[h_i=q_{p_i}
\]

置换乘法的单位元

恒等置换 \(id\) 定义为 \(id_i=i\) .

显然任何置换 \(p\) 满足 \(p\circ id = id \circ p\),于是 \(id\) 就是 \(\circ\) 的单位元 .

置换乘法的结合律

结合律:

\[p\circ q\circ r = p\circ (q\circ r)
\]

为啥?

这里我们用函数表示下标,因为下标实在太多了 .

\[(p\circ q\circ r)(i) = p(q(r(i))) = p((q\circ r)(r) = (p\circ (q\circ r))(i)
\]

Q.E.D. 是不是很显然 .

置换快速幂

有单位元,有结合律,显然可以 \(\log\) 快速幂吧 .

置换求乘法逆

显然求逆就是把置换逆过来了(类似反函数?)(从施加的角度看,真的很显然)

原来是 \(i\to p_i\),现在就是 \(p_i\to i\) .

直接模拟算就完了 .

真题解

题目要求的 \(f\) 可以看做一个置换 \(p\) .

于是 \((p^{k})^{-1}\) 就是我们要对字符串 \(s\) 施加的置换 .

直接算出来,时间复杂度 \(O(|s|\log k)\) .

一种可能的代码实现

因为求逆可以先求也可以后求甚至可以直接拿眼看出来,所以可能的代码实现有很多 .

这里是先快速幂再求逆,应该是好理解的 .

// 增加了注释
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <ctime>
#include <vector>
#include <queue>
#include <cmath>
#include <map>
#include <set>
#include <bitset>
#include <cassert>
using namespace std;
const int N = 1555;
int k;
string s;
struct perm // 置换
{
perm(int x=1){n=x; for (int i=1; i<=x; i++) a[i] = i;} // 初始化为恒等置换
int operator [](const unsigned& id)const{return a[id];}
int& operator [](const unsigned& id){return a[id];} // 元素
perm operator * (const perm& rhs)const // 乘法
{
assert(n == rhs.n);
perm x(n);
for (int i=1; i<=n; i++) x[i] = rhs[a[i]];
return x;
}
perm& operator *= (const perm& rhs){return *this = *this * rhs;}
perm inv() // 求逆
{
perm ans(n);
for (int i=1; i<=n; i++) ans[a[i]] = i;
return ans;
}
inline void prt() // debug
{
for (int i=1; i<=n; i++) printf("%d ", a[i]);
puts("");
}
inline size_t size()const{return n;}
private:
int n, a[N];
};
perm qpow(perm a, int n) // 快速幂
{
perm ans(a.size());
while (n)
{
if (n&1) ans *= a;
a *= a; n >>= 1;
} return ans;
}
perm create(int n) // 生成题目说的变换 f
{
perm ans(n);
int ptr1 = 1, ptr2 = n, cc = 0;
while (ptr1 <= ptr2){ans[++cc]=ptr1; if (cc<n) ans[++cc]=ptr2; ++ptr1; --ptr2;}
return ans;
}
int main()
{
scanf("%d", &k);
cin >> s; int l = s.length(); s = "$" + s;
perm ans = qpow(create(l), k).inv();
for (int i=1; i<=l; i++) putchar(s[ans[i]]); // 对 s 施加置换
puts("");
return 0;
}

关于循环节做法

看起来这个东西有循环节?打了一发直接过了,出题人可真 sb

实际上我们可以证明这个东西有循环节且循环节是不大于 \(|s|\) 的 .

从置换的角度考虑,如果 \(i\) 能到 \(p_i\) 就连一条 \(i\to p_i\) 的有向边 .

\(n\) 个点 \(n\) 条边显然可以构成一个内向基环树森林,运算相当于在图上走一次,一直走肯定能走到环上 .

这说明任何置换 \(p\) 的方幂都是有循环节的 .

然而这题里的 \(p\) 更加特殊:

咕咕咕

Str 真题解(置换)的更多相关文章

  1. csps-s模拟测试60嘟嘟噜,天才绅士少女助手克里斯蒂娜,凤凰院凶真题解

    题面:https://www.cnblogs.com/Juve/articles/11625190.html 嘟嘟噜: 约瑟夫问题 第一种递归的容易re,但复杂度较有保证 第二种适用与n大于m的情况 ...

  2. 对于JavaScript对象的prototype和__proto__的理解

    一.Object和Function的关系: 刚学JavaScript的时候,看书上说JavaScript中万物皆对象,而javascript中的其他对象都是从Object继承而来,包括内置对象.瞬间觉 ...

  3. [Poj3128]Leonardo's Notebook

    [Poj3128]Leonardo's Notebook 标签: 置换 题目链接 题意 给你一个置换\(B\),让你判断是否有一个置换\(A\)使得\(B=A^2\). 题解 置换可以写成循环的形式, ...

  4. python3+django2 开发易语言网络验证(中)

    第四步:网络验证的逻辑开发 1.将model注册到adminx.py中 1.在apps/yanzheng目录下新建admin.py 文件,添加代码: import xadmin from xadmin ...

  5. 【原】Java学习笔记022 - 字符串

    package cn.temptation; public class Sample01 { public static void main(String[] args) { // 字符串 // 定义 ...

  6. PMP备考资料和备考经验分享(基于PMP第六版)

    之前有不少小伙伴私信我说,你PMP考过了,有没有报班呢,有没有自己看的资料,有没有一些经验分享,今天在这里,就统一给大家分享一下,以便大家备考和学习PMP. 先说我自己的情况,我本身是从事项目管理的, ...

  7. [POI2007]EGZ-Driving Exam

    能到达所有路的充要条件是能到达左右两端的路 用vector反向建边对每条路左右分别求个最长不上升子序列 预处理出每条路向左向右分别需要多建多少路才能到达最左端和最右端 然后跑个\(\Theta(n)\ ...

  8. qsc round#2 喵哈哈村的排队(本辣鸡想七想八的,特写此博文给自己一个提醒)

    该oj是qsc自己写的比赛,友情链接:http://qscoj.cn/ 喵哈哈村的排队 发布时间: 2017年2月26日 16:13   最后更新: 2017年2月26日 16:14   时间限制: ...

  9. Ruby Regexp类

    正则表达(Regexp)类 更新:2017/06/18 改变[]集合的表格大小 80% ---> 100%  定义 正则表达: 和字符串匹配的模式(pattern)的写法 正则表达(Regexp ...

随机推荐

  1. Nginx代理websocket为什么要这样做?

    Nginx反向代理websocket 示例: http { map $http_upgrade $connection_upgrade { default upgrade; '' close; } s ...

  2. 图解Tire树+代码实现

    简介   Trie又称为前缀树或字典树,是一种有序树,它是一种专门用来处理串匹配的数据结构,用来解决一组字符中快速查找某个字符串的问题.Google搜索的关键字提示功能相信大家都不陌生,我们在输入框中 ...

  3. 用Docker打包Python运行环境

    虽然Docker作为部署环境打包镜像的工具,和我的科研并没有直接的关系.但我觉得在项目中运用Docker来打包环境依赖也可以大大提高工作效率,于是准备专门学习一下Docker. 1. Docker基础 ...

  4. 205. Isomorphic Strings - LeetCode

    Question 205. Isomorphic Strings Solution 题目大意:判断两个字符串是否具有相同的结构 思路:构造一个map,存储每个字符的差,遍历字符串,判断两个两个字符串中 ...

  5. awk内建函数

    内建函数 length() 获得字符串长度 cat score.txt Marry 2143 78 84 77 Jack 2321 66 78 45 Tom 2122 48 77 71 Mike 25 ...

  6. undefined与null与?. ??

    undefined: undefined是全局对象的一个属性,在一下情况下都是undefined: 当一个变量没有被赋值: 当一个函数没有返回值: 当某个对象不存在某个属性却去访问: 当函数定义了形参 ...

  7. asp.net6 blazor 文件上传

    微软在asp.net6中给blazor新增了一个IJSStreamReference的接口. 我们今天的所有内容,都要依赖这个接口,因为它可以把流直接传到c#中,这样我们就可以做很多的骚操作了. 今天 ...

  8. lnav-日志查看器

    lnav是一个基于控制台的高级lnav是一个基于控制台的高级日志文件查看器(浏览器). lnav支持日志高亮显示内容以及查看压缩的日志文件,而且它可以使用较小的内存实时查看较大的日志文件.日志文件查看 ...

  9. MTK 虚拟 sensor bring up (pick up) sensor2.0

    pick up bring up sensor2.0 1.SCP侧的配置 (1) 放置驱动pickup.c (2) 添加底层驱动文件编译开关 (3) 加入编译文件 (4) 增加数据上报方式 (5)修改 ...

  10. 可变参数——JavaSE基础

    可变参数 方法声明中,在指定参数类型后加一个省略号...即可声明可变参数 可变参数必须是参数列表的最后一个参数 声明 public void test(int... i){ System.out.pr ...