题面

对于字符串 \(s\) 定义一个变换 \(f(s)\) 表示, \(\forall 1\le k\le \lfloor|s|/2\rfloor\) ,将 \(s\) 中从后往前第 \(k\) 个字符插入从前往后第 \(k\) 个字符和第 \(k+1\) 个字符之间后得到的字符串,例如 \(\texttt{abcdef}\) 变换后得到 \(\texttt{afbecd}\) .

现在给出用 \(f(s)\) 变换过 \(k\) 次以后的字符串(即执行 \(k\) 次 \(s:=f(s)\)),求变换之前的字符串 .

(别骂我,这是原题面)

\(3\le |s|\le 10^3, 1\le k\le 10^9\) .

置换

这里没有群论

这里没有群论 .

这里的置换是狭义的,正经置换看 OI-Wiki(内含 Burnside,慎入)

置换

一个置换 \(p\) 定义为一个排列,置换相当于一个运算,将原来在位置 \(i\) 的东西变到位置 \(p_i\) .

置换的乘法(复合)

你对一个东西施加置换 \(p\) 然后施加置换 \(q\),就相当于施加 \(p\circ q\) .

显然新的置换 \(h=p\circ q\) 由下式直接表示:

\[h_i=q_{p_i}
\]

置换乘法的单位元

恒等置换 \(id\) 定义为 \(id_i=i\) .

显然任何置换 \(p\) 满足 \(p\circ id = id \circ p\),于是 \(id\) 就是 \(\circ\) 的单位元 .

置换乘法的结合律

结合律:

\[p\circ q\circ r = p\circ (q\circ r)
\]

为啥?

这里我们用函数表示下标,因为下标实在太多了 .

\[(p\circ q\circ r)(i) = p(q(r(i))) = p((q\circ r)(r) = (p\circ (q\circ r))(i)
\]

Q.E.D. 是不是很显然 .

置换快速幂

有单位元,有结合律,显然可以 \(\log\) 快速幂吧 .

置换求乘法逆

显然求逆就是把置换逆过来了(类似反函数?)(从施加的角度看,真的很显然)

原来是 \(i\to p_i\),现在就是 \(p_i\to i\) .

直接模拟算就完了 .

真题解

题目要求的 \(f\) 可以看做一个置换 \(p\) .

于是 \((p^{k})^{-1}\) 就是我们要对字符串 \(s\) 施加的置换 .

直接算出来,时间复杂度 \(O(|s|\log k)\) .

一种可能的代码实现

因为求逆可以先求也可以后求甚至可以直接拿眼看出来,所以可能的代码实现有很多 .

这里是先快速幂再求逆,应该是好理解的 .

// 增加了注释
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <ctime>
#include <vector>
#include <queue>
#include <cmath>
#include <map>
#include <set>
#include <bitset>
#include <cassert>
using namespace std;
const int N = 1555;
int k;
string s;
struct perm // 置换
{
perm(int x=1){n=x; for (int i=1; i<=x; i++) a[i] = i;} // 初始化为恒等置换
int operator [](const unsigned& id)const{return a[id];}
int& operator [](const unsigned& id){return a[id];} // 元素
perm operator * (const perm& rhs)const // 乘法
{
assert(n == rhs.n);
perm x(n);
for (int i=1; i<=n; i++) x[i] = rhs[a[i]];
return x;
}
perm& operator *= (const perm& rhs){return *this = *this * rhs;}
perm inv() // 求逆
{
perm ans(n);
for (int i=1; i<=n; i++) ans[a[i]] = i;
return ans;
}
inline void prt() // debug
{
for (int i=1; i<=n; i++) printf("%d ", a[i]);
puts("");
}
inline size_t size()const{return n;}
private:
int n, a[N];
};
perm qpow(perm a, int n) // 快速幂
{
perm ans(a.size());
while (n)
{
if (n&1) ans *= a;
a *= a; n >>= 1;
} return ans;
}
perm create(int n) // 生成题目说的变换 f
{
perm ans(n);
int ptr1 = 1, ptr2 = n, cc = 0;
while (ptr1 <= ptr2){ans[++cc]=ptr1; if (cc<n) ans[++cc]=ptr2; ++ptr1; --ptr2;}
return ans;
}
int main()
{
scanf("%d", &k);
cin >> s; int l = s.length(); s = "$" + s;
perm ans = qpow(create(l), k).inv();
for (int i=1; i<=l; i++) putchar(s[ans[i]]); // 对 s 施加置换
puts("");
return 0;
}

关于循环节做法

看起来这个东西有循环节?打了一发直接过了,出题人可真 sb

实际上我们可以证明这个东西有循环节且循环节是不大于 \(|s|\) 的 .

从置换的角度考虑,如果 \(i\) 能到 \(p_i\) 就连一条 \(i\to p_i\) 的有向边 .

\(n\) 个点 \(n\) 条边显然可以构成一个内向基环树森林,运算相当于在图上走一次,一直走肯定能走到环上 .

这说明任何置换 \(p\) 的方幂都是有循环节的 .

然而这题里的 \(p\) 更加特殊:

咕咕咕

Str 真题解(置换)的更多相关文章

  1. csps-s模拟测试60嘟嘟噜,天才绅士少女助手克里斯蒂娜,凤凰院凶真题解

    题面:https://www.cnblogs.com/Juve/articles/11625190.html 嘟嘟噜: 约瑟夫问题 第一种递归的容易re,但复杂度较有保证 第二种适用与n大于m的情况 ...

  2. 对于JavaScript对象的prototype和__proto__的理解

    一.Object和Function的关系: 刚学JavaScript的时候,看书上说JavaScript中万物皆对象,而javascript中的其他对象都是从Object继承而来,包括内置对象.瞬间觉 ...

  3. [Poj3128]Leonardo's Notebook

    [Poj3128]Leonardo's Notebook 标签: 置换 题目链接 题意 给你一个置换\(B\),让你判断是否有一个置换\(A\)使得\(B=A^2\). 题解 置换可以写成循环的形式, ...

  4. python3+django2 开发易语言网络验证(中)

    第四步:网络验证的逻辑开发 1.将model注册到adminx.py中 1.在apps/yanzheng目录下新建admin.py 文件,添加代码: import xadmin from xadmin ...

  5. 【原】Java学习笔记022 - 字符串

    package cn.temptation; public class Sample01 { public static void main(String[] args) { // 字符串 // 定义 ...

  6. PMP备考资料和备考经验分享(基于PMP第六版)

    之前有不少小伙伴私信我说,你PMP考过了,有没有报班呢,有没有自己看的资料,有没有一些经验分享,今天在这里,就统一给大家分享一下,以便大家备考和学习PMP. 先说我自己的情况,我本身是从事项目管理的, ...

  7. [POI2007]EGZ-Driving Exam

    能到达所有路的充要条件是能到达左右两端的路 用vector反向建边对每条路左右分别求个最长不上升子序列 预处理出每条路向左向右分别需要多建多少路才能到达最左端和最右端 然后跑个\(\Theta(n)\ ...

  8. qsc round#2 喵哈哈村的排队(本辣鸡想七想八的,特写此博文给自己一个提醒)

    该oj是qsc自己写的比赛,友情链接:http://qscoj.cn/ 喵哈哈村的排队 发布时间: 2017年2月26日 16:13   最后更新: 2017年2月26日 16:14   时间限制: ...

  9. Ruby Regexp类

    正则表达(Regexp)类 更新:2017/06/18 改变[]集合的表格大小 80% ---> 100%  定义 正则表达: 和字符串匹配的模式(pattern)的写法 正则表达(Regexp ...

随机推荐

  1. Next.js 在 Serverless 中从踩坑到破茧重生

    作者 杨苏博,偏后端的全栈开发,目前负责腾云扣钉的 Cloud Studio 产品.在团队中负责接技术架构设计与 Review.Cloud Studio 编辑器内核设计与开发.部分核心插件设计与开发: ...

  2. form表单与CSS选择器和样式操作

    form表单 """获取前端用户数据并发送给后端服务器""" <form action=""></fo ...

  3. 记一次百万行WPF项目代码的重构记录

    此前带领小组成员主导过一个百万行代码上位机项目的重构工作,分析项目中存在的问题做了些针对性的优化,整个重构工作持续了一年半之久. 主要针对以下问题: 1.产品型号太多导致代码工程的分支太多,维护时会产 ...

  4. 软件项目管理 ——1.2.PMBOK与软件项目管理知识体系

    软件项目管理 --1.2.PMBOK与软件项目管理知识体系 归档于软件项目管理初级学习路线 第一章 软件项目管理基本概念 <初级学习路线合集 > @ 目录 软件项目管理 --1.2.PMB ...

  5. 521. Longest Uncommon Subsequence I - LeetCode

    Question 521. Longest Uncommon Subsequence I Solution 题目大意:给两个字符串,找出非共同子串的最大长度 思路:字符串相等就返回-1,不等就返回长度 ...

  6. 互联网大厂目标管理OKR实践落地与反思

    上一篇「 互联网公司目标管理OKR和绩效考核的误区 」介绍了使用 OKR 时要澄清的一些概念,但是实际使用中又如何呢?我们快手也是很大的互联网公司,大家都是年轻人,思维活跃,容易接受新事物,敢尝试,但 ...

  7. Canal-监听数据库表的变化

    1. 简介 Canal是阿里巴巴旗下的一款开源项目,纯Java开发.基于数据库增量日志解析,提供增量数据订阅&消费功能. 工作原理 Mysql主备复制原理 MySQL master 将数据变更 ...

  8. 最简单的离散概率分布,伯努利分布 《考研概率论学习之我见》 -by zobol

    上文讲了离散型随机变量的分布,我们从最简单的离散型分布伯努利分布讲起,伯努利分布很简单,但是在现实生活中使用的很频繁.很多从事体力工作的人,在生活中也是经常自觉地"发现"伯努利分布 ...

  9. C#中的 Attribute 与 Python/TypeScript 中的装饰器是同个东西吗

    前言 最近成功把「前端带师」带入C#的坑(实际是前端带师开始从cocos转unity游戏开发了) 某天,「前端带师」看到这段代码后问了个问题:[这个是装饰器]? [HttpGet] public Re ...

  10. js 表面学习 - 认识结构2

    单行注释以 // 开头. 多行注释以 /* 开头,以 */ 结尾. 任何位于 /* 和 */ 之间的文本都会被 JavaScript 忽略. JavaScript 数据类型 JavaScript 变量 ...