题目描述

输入数据给出一个有N(2  < =  N  < =  1,000)个节点,M(M  < =  100,000)条边的带权有向图.  要求你写一个程序,  判断这个有向图中是否存在负权回路.  如果从一个点沿着某条路径出发,  又回到了自己,  而且所经过的边上的权和小于0,  就说这条路是一个负权回路. 如果存在负权回路,  只输出一行-1; 如果不存在负权回路,  再求出一个点S(1  < =  S  < =  N)到每个点的最短路的长度.  约定:    S到S的距离为0,  如果S与这个点不连通,  则输出NoPath.

输入

第一行:  点数N(2  < =  N  < =  1,000),  边数M(M  < =  100,000),  源点S(1  < =  S  < =  N); 以下M行,  每行三个整数a,  b,  c表示点a,  b(1  < =  a,  b  < =  N)之间连有一条边,  权值为c(-1,000,000  < =  c  < =  1,000,000)

输出

如果存在负权环,  只输出一行-1,  否则按以下格式输出 共N行,  第i行描述S点到点i的最短路:  如果S与i不连通,  输出NoPath; 如果i  =  S,  输出0; 其他情况输出S到i的最短路的长度.

这个题真是异常的坑  打着题目是sssp的表面而实地里却隐藏这一刻spfa的心(貌似不通)   下面讲一下spfa的详细操作步骤(和dijkstra应该很像):

  1. g[i][j]表示邻接矩阵  dist[i]表示源点到i的距离  cnt[i]表示点i的入队次数  v[i]表示i这个点是否在队列中

  2. 初始化:v[]数组赋值为false  cnt[]=0 把所有点与源点的距离变为很大

  3. 接着 把源点入队 再把dist[start]变为0

  4. 然后做和bfs差不多的操作  拓展队首的点  更新新的最短的距离......

  5. 如果某个点的入队次数>n那么一定有负环 证明:如果一个点存在正的最短路 那么他最多可以和其他所有点连而拓展n次  而如果是负环  那么他的这个最短路中如果有负环  那么就会越拓展越小  当然入队就会超过n次

这里还有一个地方要注意 就是判负环 因为这个负环不一定在源点的路上 那么是不是应该把所有点都找过去呢 显然不是  这里有两个方法 推荐第二种做法:

  1. 用dfs找连通块 然后对每一个联通块做SPFA

  2. 受zbt大神的指点  可以加一个入度为0  只有出边并连着除他外所有点   那么只要对这个点进行拓展就可以找到所有的负环

最后还有一点就是我这样做在vijos里只有50分  粗部估计是这个邻接矩阵的问题  最好改成边集数组来做  代码下次给

代码如下:

#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn=1000+10;
long long g[maxn][maxn],dist[maxn],cnt[maxn];
bool v[maxn],used[maxn];
int n,m,s;
int a,b,c;
queue<int>q;
bool SPFA(int start)
{
for(int i=1;i<=n;i++)
{
dist[i]=0x7f7f7f;
cnt[i]=0;
v[i]=false;
}
while(!q.empty())
q.pop();
v[start]=true;
q.push(start);
dist[start]=0;
while(!q.empty())
{
int x=q.front();
q.pop();
v[x]=false;
for(int k=1;k<=n;k++)
if(g[x][k]<0x7f7f7f&&dist[x]+g[x][k]<dist[k])
{
dist[k]=dist[x]+g[x][k];
// used[k]=true;
if(!v[k])
{
cnt[k]++;
if(cnt[k]>n)
return false;
v[k]=true;
q.push(k);
}
}
}
return true;
}
int main()
{
ios::sync_with_stdio(false);
// freopen("1.in","r",stdin);
cin>>n>>m>>s;
for(int i=1;i<=n+1;i++)
for(int j=1;j<=n+1;j++)
g[i][j]=0x7f7f7f;
for(int i=1;i<=m;i++)
{
cin>>a>>b>>c;
if(c<g[a][b])
g[a][b]=c;
}
for(int i=1;i<=n;i++)
g[n+1][i]=1;
// for(int i=1;i<=n;i++)
// {
// for(int j=1;j<=n;j++)
// cout<<g[i][j]<<' ';
// cout<<endl;
// }
// for(int i=1;i<=n;i++)
// {
// if(!SPFA(i))
// {
// cout<<-1<<endl;
// return 0;
// }
// }
if(!SPFA(n+1))
{
cout<<-1<<endl;
return false;
} SPFA(s);
for(int i=1;i<=n;i++)
{
if(dist[i]==0x7f7f7f)
{
cout<<"NoPath"<<endl;
continue;
}
cout<<dist[i]<<endl;
}
return 0;
}

SPFA_YZOI 1662: Easy sssp的更多相关文章

  1. vijosP1053 Easy sssp

    vijosP1053 Easy sssp 链接:https://vijos.org/p/1053 [思路] SPFA. 题目中的陷阱比较多,但是只要中规中矩的写SPFA诸如:s与负圈不相连,有重边的情 ...

  2. Easy sssp

    Easy sssp 时间限制: 1 Sec  内存限制: 128 MB提交: 103  解决: 20[提交][状态][讨论版] 题目描述 输入数据给出一个有N(2  < =  N  < = ...

  3. Easy sssp(spfa)(负环)

    vijos    1053    Easy sssp 方法:用spfa判断是否存在负环 描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,00 ...

  4. Vijos1053 Easy sssp[spfa 负环]

    描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...

  5. Loj10086 Easy SSSP

      试题描述 输入数据给出一个有 N 个节点,M 条边的带权有向图.要求你写一个程序,判断这个有向图中是否存在负权回路.如果从一个点沿着某条路径出发,又回到了自己,而且所经过的边上的权和小于 0,就说 ...

  6. vijos 1053 Easy sssp

    描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...

  7. Easy sssp(vijos 1053)

    描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...

  8. Vijos——T1053 Easy sssp

    https://vijos.org/p/1053 描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程 ...

  9. Easy sssp(spfa判负环与求最短路)

    #include<bits/stdc++.h> using namespace std; int n,m,s; struct node{ int to,next,w; }e[]; bool ...

随机推荐

  1. Objective-C categories in static library

    ASK: Can you guide me how to properly link static library to iphone project. I use staic library pro ...

  2. Yii框架中ActiveRecord使用Relations

    参考文章: http://blog.csdn.net/yjj1s/article/details/6885276 http://www.gowhich.com/blog/38 http://www.c ...

  3. Struct2 拦截器

    拦截器的整个过程 程序是在执行Action之前调用的拦截器,整个过程是这样子的 这里面注意两个问题: public void serviceAction(HttpServletRequest requ ...

  4. php 获取目录下文件列表

    可以用 scandir() 函数 例如: http://www.w3school.com.cn/php/func_directory_scandir.asp

  5. java数据结构-非线性结构之树

    一.树状图 树状图是一种数据结构,它是由n(n>=1)个有限节点组成的具有层次关系的集合.因其结构看起来想个倒挂的树,即根朝上,叶子在下,故被称为"树". 特点: 1. 每个 ...

  6. 圣诞节来了,雪花纷飞的CSS3动画,还不首页用起来

    圣诞节来了,冬天来了,怎么可以没有雪花纷飞效果,昨天下班前折腾了一会儿,弄了个雪花纷飞的实例,有兴趣的可以交流分享下. 原文链接:http://www.html5think.com/article/i ...

  7. springMVC零配置吐槽

    此时此刻,哥哥我不得不大大的吐槽一下.从github上down下来一个spring-mvc的chat演示样例,牛逼作者用的是注解的方式,项目全然零配置.而我眼下用的springMVC框架,还是在xml ...

  8. Android SDK无法更新问题解决

    1.在SDK Manager下Tools->Options打开了SDK Manager的Settings,选中“Force https://… sources to be fetched usi ...

  9. Messages的例子

    13.33 13.36 13.37 Message.h #ifndef MESSAGE_H #define MESSAGE_H #include<iostream> #include< ...

  10. myeclipse 编码问题

    在使用eclipse+MyEclipse开发中,许多文件编码默认是ISO-8859-1,不支持中文(如常用的JSP),这样我们每次建文件都要手动改编码,其实我们可以在设置文件默认编码,今后再创建时就不 ...