Bzoj 1696: [Usaco2007 Feb]Building A New Barn新牛舍 中位数,数学
1696: [Usaco2007 Feb]Building A New Barn新牛舍
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 394 Solved: 181
[Submit][Status][Discuss]
Description
经过多年的积蓄,农夫JOHN决定造一个新的牛舍。他知道所有N(2 <= N <= 10,000)头牛的吃草位置,所以他想把牛舍造在最方便的地方。 每一头牛吃草的位置是一个整数点(X_i, Y_i) (-10,000 <= X_i <= 10,000; -10,000 <= Y_i <= 10,000)。 没有两头牛的吃草位置是相邻的。 JOHN决定把牛舍造在一个没有牛吃草的整数点上。如果牛舍在(X, Y),在(X_i, Y_i)的牛到牛舍的距离是|X-X_i|+|Y-Y_i|。 JOHN把牛舍造在哪儿才能使所有牛到牛舍的距离和最低?
Input
第1行: 一个数,N。
第2~N+1行:第i+1行 包含第i头牛的位置(X_i, Y_i)。
Output
第1行: 两个数,最小距离和和所有可能达到这个距离和的牛舍位置的数目。
Sample Input
1 -3
0 1
-2 1
1 -1
输入解释:
一共有4头牛,位置分别为(1, -3), (0, 1), (-2, 1), 和(1, -1).
Sample Output
输出解释:
最小距离和是10,可以在牛舍位于 (0, -1), (0, 0), (1, 0), (1, 1)时达到。
HINT
Source
题解:
由于题目要求总距离最小,所以就可以想到找中位数。
然而证明并不会。。。自己找度娘。。。
把x,y分别排序。
如果牛的个数为奇数,我们就分别取x,y排好序的中点。然后判断是否有牛。若没有就取当前这个点,若有就去找上下左右四个点中最小值和最小值的个数。(题目保证了牛不相邻)
如果为偶数,中位数有两个(x1,y1),(x2,y2)。则答案的个数为(x2-x1+1)*(y2-y1+1)-中间有牛的个数。
具体看程序:
#include<bits/stdc++.h>
using namespace std;
#define INF 1e9
int x[],y[],xx[],yy[];
int fx[]={,,,-};
int fy[]={,-,,};
int read()
{
int s=,fh=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')fh=-;ch=getchar();}
while(ch>=''&&ch<=''){s=s*+(ch-'');ch=getchar();}
return s*fh;
}
int main()
{
freopen("newbarn.in","r",stdin);
freopen("newbarn.out","w",stdout);
int n,i,nn,x1,y1,x2,y2,sum,j,gs,mn;
n=read();
for(i=;i<=n;i++)x[i]=read(),y[i]=read(),xx[i]=x[i],yy[i]=y[i];
sort(xx+,xx+n+);
sort(yy+,yy+n+);
if(n%!=)
{
nn=(n+)/;
x1=xx[nn];
y1=yy[nn];
for(j=;j<=n;j++)if(x[j]==x1&&y[j]==y1)break;
if(j<=n)
{
mn=INF;gs=;
for(i=;i<=;i++)
{
x2=x1+fx[i];
y2=y1+fy[i];
sum=;
for(j=;j<=n;j++)
{
sum+=(int)fabs(x[j]-x2)+(int)fabs(y[j]-y2);
}
if(sum<mn)
{
mn=sum;gs=;
}
else if(sum==mn)gs++;
}
printf("%d %d",mn,gs);
return ;
}
sum=;
for(i=;i<=n;i++)
{
sum+=(int)fabs(x[i]-x1)+(int)fabs(y[i]-y1);
}
printf("%d 1",sum);
}
else
{
nn=n/;
sum=;
x1=xx[nn];
y1=yy[nn];
sum=;
for(i=;i<=n;i++)
{
sum+=(int)fabs(x[i]-x1)+(int)fabs(y[i]-y1);
}
x2=xx[nn+];
y2=yy[nn+];
gs=(x2-x1+)*(y2-y1+);
for(i=;i<=n;i++)
{
if(x[i]>=x1&&x[i]<=x2&&y[i]>=y1&&y[i]<=y2)
{
gs--;
}
}
printf("%d %d",sum,gs);
}
fclose(stdin);
fclose(stdout);
return ;
}
Bzoj 1696: [Usaco2007 Feb]Building A New Barn新牛舍 中位数,数学的更多相关文章
- bzoj 1696: [Usaco2007 Feb]Building A New Barn新牛舍 ——中位数排序
Description 经过多年的积蓄,农夫JOHN决定造一个新的牛舍.他知道所有N(2 <= N <= 10,000)头牛的吃草位置,所以他想把牛舍造在最方便的地方. 每一头牛吃草的位置 ...
- BZOJ 1696 [Usaco2007 Feb]Building A New Barn新牛舍 数学
题意:链接 方法:数学+模拟 解析: 首先这类问题不是第一次见了,所以直接知道拿x的中位数.y的中位数. 这题就是讨论情况很的烦. 题中有个限制,给出待求和的点不能选取. 所以假设奇数个点,求出x中位 ...
- 【BZOJ】1696: [Usaco2007 Feb]Building A New Barn新牛舍(贪心)
http://www.lydsy.com/JudgeOnline/problem.php?id=1696 原题要求min(sum{|x-xi|+|y-yi|}),且一定要看题:“没有两头牛的吃草位置是 ...
- BZOJ1696: [Usaco2007 Feb]Building A New Barn新牛舍
n<=10000个点(xi,yi),找到一个不同于给出的所有点的点,使得该点到所有点的曼哈顿距离最小并找出这样的点的个数. 第一眼看上去这不是中位数嘛,奇数一个点偶数一片,然后找一下这篇区域有几 ...
- BZOJ 1626: [Usaco2007 Dec]Building Roads 修建道路( MST )
计算距离时平方爆了int结果就WA了一次...... ------------------------------------------------------------------------- ...
- BZOJ 1631: [Usaco2007 Feb]Cow Party( 最短路 )
这道题和蔡大神出的今年STOI初中组的第二题几乎一模一样... 先跑一遍最短路 , 再把所有边反向 , 再跑一遍 , 所有点两次相加的最大值即为answer --------------------- ...
- BZOJ 1633: [Usaco2007 Feb]The Cow Lexicon 牛的词典
题目 1633: [Usaco2007 Feb]The Cow Lexicon 牛的词典 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 401 Solv ...
- BZOJ 1632: [Usaco2007 Feb]Lilypad Pond
题目 1632: [Usaco2007 Feb]Lilypad Pond Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 390 Solved: 109[ ...
- BZOJ 1631: [Usaco2007 Feb]Cow Party
题目 1631: [Usaco2007 Feb]Cow Party Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 491 Solved: 362[Sub ...
随机推荐
- 转--浅谈ETL
ETL是将业务系统的数据经过抽取.清洗转换之后加载到数据仓库的过程,目的是将企业中的分散.零乱.标准不统一的数据整合到一起,为企业的决策提供分析依据. ETL是BI项目重要的一个环节. 通常情况下,在 ...
- 分布式Web服务器架构(转)
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网 ...
- ios专题 - sandbox机制
[原创]http://www.cnblogs.com/luoguoqiang1985 ios在安装APP时,把APP的偏好设置与数据放在sandbox里.sandbox通过一系列细颗粒度控制APP访问 ...
- 图像载入 imread()[OpenCV 笔记4]
Mat imread( ); filename 载入的图像名: flags 指定加载图像的颜色类型,默认载入三通道彩色图像, 如果取枚举类型 (OpenCV3中暂时失效),则定义如下 enum{ CV ...
- php的各种配置
问题:1.如果去掉URL_MODEL=1时的index.php第一步:把Apache配置文件中的LoadModule rewrite_module modules/mod_rewrite.so 取消注 ...
- [Neural Networks] Momentum
一.目的 加快参数的收敛速度. 二.做法 另第t次的权重更新对第t+1次的权重更新造成影响. 从上式可看出,加入momentum后能够保持权重的更新方向,同时加快收敛.通常alpha的取值为[0.7, ...
- OSI 7层模型
协议:电脑与电脑通信之间的一种“约定”ois模式1,物理层2. 数据链路层3. 网络层4. 传输层5. 会话层6. 表示层7. 应用层发email为例 应用层:从用户输入完成所要发送的内容并点击“发送 ...
- PHPCMS标签:get标签
GET标签源自于PHPCMS 2008版,其使用SQL语句直接获取数据的特性,成为大家制作模板的首选. 在V9中这样强大的工具也得到保留下来. GET标签使用方式如下: {pc:get sql=&qu ...
- 手写js面向对象选项卡插件
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8&qu ...
- Mvc Model 模板的获取【学习笔记】
MVC的Model模板有两种:一种编辑模式(@Html.EditorFor()).一种显示模式(Html.DisplayFor()). 模板的获取与执行(以下转自这里): 当我们调用HtmlHelpe ...