传送门

思路:


前置知识——普通树D:

▲普通的树形 DP :

  设 f [ i ][ 0 ] 表示这个点不取,则它的所有子节点都要取;f [ i ][ 1 ] 表示这个点取,则它的子节点取与不取对之前的答案没有影响,只要取两个中最优的情况。

▲转移方程式:

   

▲操作实现:

  常采用叶→根的转移形式,根据父节点的状态确定子节点的状态,若子节点有多个,则需要一一枚举,将子节点(子树)的 DP 值合并。


本题思路:

  一道 树形DP 的模板题。……答案 ans = min( f[ root ][ 1 ],f[ root ][ 0 ] )。

标程:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<vector>
#include<stack>
#include<deque>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define maxn 1501
#define min(a,b) ((a)<(b)?(a):(b))
typedef long long LL;
LL f[maxn][],n,root;
bool bo[maxn];
struct hh
{
LL num,son[maxn];
}t[maxn];
inline LL read()
{
LL kr=,xs=;char ls;
ls=getchar();
while(!isdigit(ls))
{
if(!(ls^))
kr=-;
ls=getchar();
}
while(isdigit(ls))
{
xs=(xs<<)+(xs<<)+(ls^);
ls=getchar();
}
return xs*kr;
}
inline void dp(LL x)//计算以x为根的子树的值
{
f[x][]=;f[x][]=;//f[x][0]为节点x上不设士兵的初值,f[x][1]为节点x上设士兵的初值
if(!t[x].num) return;//到达叶子节点,返回
for(LL i=;i<=t[x].num;i++)//枚举x的每个子节点
{
dp(t[x].son[i]);//递归计算第i个子节点的两个值
f[x][]+=f[t[x].son[i]][];//节点x上不设士兵,将其值累加给自己
f[x][]+=min(f[t[x].son[i]][],f[t[x].son[i]][]);//节点x上设士兵,子节点可设可不设,选最小的累加给自己
}
}
int main()
{
n=read();
LL x,y;
for(LL i=;i<=n;i++)
{
x=read();t[x].num=read();
for(LL j=;j<=t[x].num;j++)
{
y=read();t[x].son[j]=y;bo[y]=true;
}
}//浅显易懂
root=;
while(bo[root]) root++;//找根节点编号
dp(root);
printf("%lld\n",min(f[root][],f[root][]));
return ;
}

P2016 战略游戏的更多相关文章

  1. 洛谷P2016 战略游戏

    P2016 战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目 ...

  2. P2016 战略游戏——树形DP大水题

    P2016 战略游戏 树形DP 入门题吧(现在怎么是蓝色标签搞不懂): 注意是看见每一条边而不是每一个点(因为这里错了好几次): #include<cstdio> #include< ...

  3. 【题解】Luogu p2016 战略游戏 (最小点覆盖)

    题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能 ...

  4. 洛谷P2016战略游戏

    传送门啦 战略游戏这个题和保安站岗很像,这个题更简单,这个题求的是士兵人数,而保安站岗需要求最优价值. 定义状态$ f[u][0/1] $ 表示 $ u $ 这个节点不放/放士兵 根据题意,如果当前节 ...

  5. [洛谷P2016] 战略游戏 (树形dp)

    战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得 ...

  6. P2016 战略游戏 (树形DP)

    题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能 ...

  7. 【洛谷P2016战略游戏】

    树形dp的经典例题 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的 ...

  8. luogu P2016 战略游戏

    嘟嘟嘟 树形dp水题啦. 刚开始以为和[SDOI2006]保安站岗这道题一样,然后交上去WA了. 仔细想想还是有区别的,一个是能看到相邻点,一个是能看到相邻边.对于第一个,可以(u, v)两个点都不放 ...

  9. Luogu P2016 战略游戏(树形DP)

    题解 设\(f[u][0/1/2]\)表示当前节点\(u\),放或不放(\(0/1\))时其子树满足题目要求的最小代价,\(2\)表示\(0/1\)中的最小值. 则有: \[ f[u][0]=\sum ...

随机推荐

  1. HDU 1233 还是畅通工程 (最小生成树 )

    某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离.省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路 ...

  2. B/S开发介绍

    b/s 的优势: 1.开发成本低 2.管理维护简单 3.产品升级便利 4.对用户的培训费用低 5.用户使用方便,出现故障的概率小 b/s 的不足: 1.安全性不足 2.客户端不能随心变化,受浏览器限制

  3. CXF+Spring+Hibernate实现RESTful webservice服务端实例

    1.RESTful API接口定义 /* * Copyright 2016-2017 WitPool.org All Rights Reserved. * * You may not use this ...

  4. mycat水平分表

    和垂直分库不同,水平分表,是将那些io频繁,且数据量大的表进行水平切分. 基本的配置和垂直分库一样,我们需要改的就是我们的 schema.xml和rule.xml文件配置(server.xml不用做任 ...

  5. 保存canvas

    http://www.crazybunqnq.com/2018/09/01/PythonSeleniumSaveCanvas/ http://www.webhek.com/post/save-canv ...

  6. 在win10下安装eclipse

    1.在官网下载jdk.目前最新版本为jdk8. http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-21331 ...

  7. 作为phper既然了解共享内存函数shmop的使用方法,那么就必须要了解一下信号量是什么,以及信号量使用的代码案例

    在单独的一个PHP进程中读写.创建.删除共享内存方面上你应该没有问题了.但是实际运行中不可能只是一个PHP进程在运行中.如果在多个进程的情况下你还是沿用单个进程的处理方法,你一定会碰到问题--著名的并 ...

  8. python之面向对象的高级进阶

    一 .isinstance(obj,cls)和issubclass(sub,super) isinstance(obj,cls)检查是否obj是否是类 cls 的对象 class Foo(object ...

  9. gitlab服务器迁移

    公司更换了新的服务器,需要把原先的gitlab迁移到新的服务器上. 1.迁移准备工作和思路:从a服务器迁移到b服务器,由于Gitlab自身的兼容性问题,高版本的Gitlab无法恢复低版本备份的数据,需 ...

  10. TensorFlow学习---tf.nn.dropout防止过拟合

    一. Dropout原理简述: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层. Dropout就是在不同的训练过程中随机扔掉一部分神经元.也 ...