BZOJ1468

POJ1741

题意: 计算树上距离<=K的点对数

我们知道树上一条路径要么经过根节点,要么在同一棵子树中。

于是对一个点x我们可以这样统计: 计算出所有点到它的距离dep[],排序后可以O(n)求得<=K的点对数量。

但画个图后我们可以发现,对于在同一棵子树中的路径被重复计算过了。于是我们Ans-=Calc(v),减去一棵子树中的路径答案,但是这并不是之前x到它们的路径,于是给v的dep[]设一个初始值为w(x->v路径权值)。

这样x的答案就计算完了,将这一过程记作Solve(x)。

考虑如何计算所有点。DFS的效率是和树深有关的。计算x->v时,我们选取v子树上的重心作为下次Solve()的参数。

选取重心每次都会使树的节点个数减半,因此递归深度最坏(链)是logn的。

这样便可O(nlog^2n)解决该题。

//2524kb	656ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=40005,MAXIN=1e5; int n,K,root,Min,Ans,Enum,H[N],nxt[N<<1],to[N<<1],val[N<<1],dep[N],sz[N],D[N];
bool vis[N];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AddEdge(int u,int v,int w)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, val[Enum]=w;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum, val[Enum]=w;
}
void Get_Root(int x,int f,int tot)
{
int mx=0; sz[x]=1;
for(int v,i=H[x]; i; i=nxt[i])
if(!vis[to[i]] && to[i]!=f)
{
Get_Root(v=to[i],x,tot), sz[x]+=sz[v];
if(sz[v]>mx) mx=sz[v];
}
mx=std::max(mx,tot-sz[x]);
if(mx<Min) Min=mx, root=x;
}
void DFS(int x,int f)
{
D[++D[0]]=dep[x];
for(int i=H[x]; i; i=nxt[i])
if(!vis[to[i]]&&to[i]!=f)
dep[to[i]]=dep[x]+val[i], DFS(to[i],x);
}
int Calc(int x,int v)
{
D[0]=0, dep[x]=v, DFS(x,-1);
std::sort(D+1,D+1+D[0]);
int l=1,r=D[0],res=0;
while(l<r)
if(D[l]+D[r]<=K) res+=r-l,++l;
else --r;
return res;
}
void Solve(int x)
{
Ans+=Calc(x,0), vis[x]=1;
for(int v,i=H[x]; i; i=nxt[i])
if(!vis[to[i]])
{
Ans-=Calc(v=to[i],val[i]);
Min=N, Get_Root(v,x,sz[v]), Solve(root);
}
} int main()
{
n=read();
for(int u,v,w,i=1; i<n; ++i) u=read(),v=read(),w=read(),AddEdge(u,v,w);
K=read();
Min=N, Get_Root(1,-1,n), Solve(root);
printf("%d",Ans); return 0;
}

BZOJ.1468.Tree(点分治)的更多相关文章

  1. bzoj 1468 Tree(点分治模板)

    1468: Tree Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1527  Solved: 818[Submit][Status][Discuss] ...

  2. BZOJ 1468 Tree 【模板】树上点分治

    #include<cstdio> #include<algorithm> #define N 50010 #define M 500010 #define rg registe ...

  3. BZOJ 1468: Tree

    Description 真·树,问距离不大于 \(k\) 的点对个数. Sol 点分治. 同上. Code /********************************************* ...

  4. 【刷题】BZOJ 1468 Tree

    Description 给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K Input N(n<=40000) 接下来n-1行边描述管道,按照题目中写的输入 接下来是 ...

  5. bzoj 1468 Tree 点分

    Tree Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1972  Solved: 1101[Submit][Status][Discuss] Desc ...

  6. 【BZOJ-1468】Tree 树分治

    1468: Tree Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1025  Solved: 534[Submit][Status][Discuss] ...

  7. bzoj 2212 Tree Rotations

    bzoj 2212 Tree Rotations 考虑一个子树 \(x\) 的左右儿子分别为 \(ls,rs\) .那么子树 \(x\) 内的逆序对数就是 \(ls\) 内的逆序对数,\(rs\) 内 ...

  8. [BZOJ 3456]城市规划(cdq分治+FFT)

    [BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...

  9. [BZOJ 2989]数列(CDQ 分治+曼哈顿距离与切比雪夫距离的转化)

    [BZOJ 2989]数列(CDQ 分治) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[y]| ...

随机推荐

  1. C++学习3--编程基础(vector、string、三种传参)

    知识点学习 Vector容器 vector是C++标准程序库中的一个类,其定义于头文件中,与其他STL组件一样,ventor属于STD名称空间: ventor是C++标准程序库里最基本的容器,设计之初 ...

  2. Linux文件系统3--打开文件

    1.前言 本文所述关于文件管理的系列文章主要是对陈莉君老师所讲述的文件系统管理知识讲座的整理. Linux可以支持不同的文件系统,它源于unix文件系统,也是unix文件系统的一大特色. 本文将以不同 ...

  3. linux统计某个特定文件名的大小总和【原创】

    [hch@EAISRVBJ2 log]$find ./ -name "test_chs_00*"|xargs du -ck|grep total|awk 'BEGIN{sum=0} ...

  4. saltstack自动化运维系列⑥SaltStack实践安装配置HAproxy

    saltstack自动化运维系列⑥SaltStack实践安装配置HAproxy 下载haproxy1.6.2.tar.gz下载地址:http://www.haproxy.org/download/1. ...

  5. Java获取当前时间的年月日方法

    package com.ob; import java.text.ParseException; import java.text.SimpleDateFormat; import java.util ...

  6. Lucene.Net简单例子-01

    前面已经简单介绍了Lucene.Net,下面来看一个实际的例子 1.1 引用必要的bll文件.这里不再介绍(Lucene.Net  PanGu  PanGu.HightLight  PanGu.Luc ...

  7. 方法名太多,使用方法的重载(overload)来解决

    package chapter04; /* 问题:方法名太多了,不容易记忆,有时会出错 使用方法的重载(overload)来解决 */public class C09_Method { public ...

  8. ERP商品类型管理相关业务处理(三十五)

    根据类型编号获取父类名称 -- ============================================= CREATE FUNCTION [dbo].[FN_getParentTyp ...

  9. SqlServer基础语法(二)

    先看一下腰实现的功能:

  10. 详解kubeadm生成的证书(转)

    https://docs.lvrui.io/2018/09/28/%E8%AF%A6%E8%A7%A3kubeadm%E7%94%9F%E6%88%90%E7%9A%84%E8%AF%81%E4%B9 ...