人工智能是当下很热门的话题,手写识别是一个典型的应用。为了进一步了解这个领域,我阅读了大量的论文,并借助opencv完成了对28x28的数字图片(预处理后的二值图像)的识别任务。

  预处理一张图片:

  首先采用opencv读取图片的构造函数读取灰度的图片,再采用大津法求出图片的二值化的阈值,并且将图片二值化。

 int otsu(const IplImage* src_image) {
double sum = 0.0;
double w0 = 0.0;
double w1 = 0.0;
double u0_temp = 0.0;
double u1_temp = 0.0;
double u0 = 0.0;
double u1 = 0.0;
double delta_temp = 0.0;
double delta_max = 0.0; int pixel_count[] = { };
float pixel_pro[] = { };
int threshold = ;
uchar* data = (uchar*)src_image->imageData;
for (int i = ; i < src_image->height; i++) {
for (int j = ; j < src_image->width; j++) {
pixel_count[(int)data[i * src_image->width + j]]++;
sum += (int)data[i * src_image->width + j];
}
}
for (int i = ; i < ; i++) {
pixel_pro[i] = (float)pixel_count[i] / (src_image->height * src_image->width);
}
for (int i = ; i < ; i++) {
w0 = w1 = u0_temp = u1_temp = u0 = u1 = delta_temp = ;
for (int j = ; j < ; j++) {
if (j <= i) {
w0 += pixel_pro[j];
u0_temp += j * pixel_pro[j];
}
else {
w1 += pixel_pro[j];
u1_temp += j * pixel_pro[j];
}
}
u0 = u0_temp / w0;
u1 = u1_temp / w1;
delta_temp = (float)(w0 *w1* pow((u0 - u1), ));
if (delta_temp > delta_max) {
delta_max = delta_temp;
threshold = i;
}
}
return threshold;
}

大津法

 void imageBinarization(IplImage* src_image) {
IplImage* binImg = cvCreateImage(cvGetSize(src_image), src_image->depth, src_image->nChannels);
CvScalar s;
int ave = ;
int binThreshold = otsu(src_image); for (int i = ; i < src_image->height; i++) {
for (int j = ; j < src_image->width; j++) {
s = cvGet2D(src_image, i, j);
ave = (s.val[] + s.val[] + s.val[]) / ;
if (ave < binThreshold) {
s.val[] = s.val[] = s.val[] = 0xff;
cvSet2D(src_image, i, j, s);
}
else {
s.val[] = s.val[] = s.val[] = 0x00;
cvSet2D(src_image, i, j, s);
}
}
}
cvCopy(src_image, binImg);
cvSaveImage(bined, binImg);
//cvShowImage("binarization", binImg);
//waitKey(0);
}

二值化

  由于是只进行简单的识别模拟,因此没有做像素断点的处理。获取minst提供的数据集,提取每个图片的hog特征,参数如下:

 HOGDescriptor *hog = new HOGDescriptor(
cvSize(ImgWidht, ImgHeight), cvSize(, ), cvSize(, ), cvSize(, ), );

  (9个方向换成18个可能会取得更准确的结果,这取决于对图片本身的复杂程度的分析

  之后即可训练knn分类器,进行分类了。

 void knnTrain() {
#ifdef SAVETRAINED
//knn training;
samples.clear();
dat_mat = Mat::zeros( * nImgNum, , CV_32FC1);
res_mat = Mat::zeros( * nImgNum, , CV_32FC1);
for (int i = ; i != ; i++) {
getFile(dirNames[i], i);
}
preTrain();
cout << "------ Training finished. -----" << endl << endl;
knn.train(dat_mat, res_mat, Mat(), false, ); #ifdef SAVEASXML
knn.save("./trained/knnTrained.xml");
#endif #else
knn.load("./trained/knnTrained.xml");
#endif //knn test
cout << endl << "--- KNN test mode : ---" << endl;
int tCnt = ;
int tAc = ;
selfknnTest(tCnt, tAc); cout << endl << endl << "Total number of test samples : " << tCnt << endl; cout << "Accuracy : " << float(float(tAc) / float(tCnt)) * << "%" << endl;
}

train

 训练结果如下,准确率还是很令人满意的。

opencv实现KNN手写数字的识别的更多相关文章

  1. OpenCV+TensorFlow图片手写数字识别(附源码)

    初次接触TensorFlow,而手写数字训练识别是其最基本的入门教程,网上关于训练的教程很多,但是模型的测试大多都是官方提供的一些素材,能不能自己随便写一串数字让机器识别出来呢?纸上得来终觉浅,带着这 ...

  2. 手把手教你使用LabVIEW OpenCV DNN实现手写数字识别(含源码)

    @ 目录 前言 一.OpenCV DNN模块 1.OpenCV DNN简介 2.LabVIEW中DNN模块函数 二.TensorFlow pb文件的生成和调用 1.TensorFlow2 Keras模 ...

  3. 机器学习(二)-kNN手写数字识别

    一.kNN算法是机器学习的入门算法,其中不涉及训练,主要思想是计算待测点和参照点的距离,选取距离较近的参照点的类别作为待测点的的类别. 1,距离可以是欧式距离,夹角余弦距离等等. 2,k值不能选择太大 ...

  4. kaggle 实战 (1): PCA + KNN 手写数字识别

    文章目录 加载package read data PCA 降维探索 选择50维度, 拆分数据为训练集,测试机 KNN PCA降维和K值筛选 分析k & 维度 vs 精度 预测 生成提交文件 本 ...

  5. 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...

  6. 10,knn手写数字识别

    # 导包 import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClas ...

  7. KNN手写数字识别

    import numpy as np import matplotlib .pyplot as plt from sklearn.neighbors import KNeighborsClassifi ...

  8. caffe+opencv3.3dnn模块 完成手写数字图片识别

    最近由于项目需要用到caffe,学习了下caffe的用法,在使用过程中也是遇到了些问题,通过上网搜索和问老师的方法解决了,在此记录下过程,方便以后查看,也希望能为和我一样的新手们提供帮助. 顺带附上老 ...

  9. 用tensorflow求手写数字的识别准确率 (简单版)

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = in ...

随机推荐

  1. 使用TCP协议的NAT穿透技术

    一直以来,说起NAT穿透,很多人都会被告知使用UDP打孔这个技术,基本上没有人会告诉你如何使用TCP协议去穿透(甚至有的人会直接告诉你TCP协议是无法实现穿透的).但是,众所周知的是,UDP是一个无连 ...

  2. sampleGradient(sampler,uv,dds,ddy)

    vsm里面用这个梯度采样 采放了z,z*z的shadowmap 这种采样方式和普通sample有什么区别

  3. 编程计算并输出1~n之间所有素数之和

    http://www.tuicool.com/articles/qaaA3i   TODO

  4. https+ssl详解

    这是转载别人的写的很好,(转:崔永秀) 把这几天学习到的关于ssl和https协议的内容在这里分享一下,适合一些像我一样的网络协议初学者. ssl协议的起源和历史我就不再多说了,就是那个Netscap ...

  5. codeforces #236 div2 简洁题解

    A:A. Nuts time limit per test 1 second memory limit per test 256 megabytes input standard input outp ...

  6. redis集群部署之codis 维护脚本

    搞了几天redis cluster codis 的部署安装,测试,架构优化,配合研发应用整合,这里记一些心得! 背景需求: 之前多个业务都在应用到redis库,各业务独立占用主从两台服务器,硬件资源利 ...

  7. Grid行编辑插件

    //操作列不显示应该就是autoLoad的问题.         Ext.onReady(function () {             Ext.BLANK_IMAGE_URL = "E ...

  8. 初识layer 快速入门

    http://layer.layui.com/hello.html 如果,你初识layer,你对她不知所措,你甚至不知如何绑定事件… 那或许你应该用秒做单位,去认识她. 开始了解 第一步:部署 下载l ...

  9. Acdream1217 Cracking' RSA(高斯消元)

    题意:给你m个数(m<=100),每个数的素因子仅来自于前t(t<=100)个素数,问这m个数的非空子集里,满足子集里的数的积为完全平方数的有多少个. 一开始就想进去里典型的dp世界观里, ...

  10. oracle创建表空间,创建用户(转)

    //创建临时表空间 create temporary tablespace test_temp tempfile 'E:\oracle\product\10.2.0\oradata\testserve ...