Problem Description
There are many secret openings in the floor which are covered by a big heavy stone. When the stone is lifted up, a special mechanism detects this and activates poisoned arrows that are shot near the opening. The only possibility is to lift the stone very slowly and carefully. The ACM team must connect a rope to the stone and then lift it using a pulley. Moreover, the stone must be lifted all at once; no side can rise before another. So it is very important to find the centre of gravity and connect the rope exactly to that point. The stone has a polygonal shape and its height is the same throughout the whole polygonal area. Your task is to find the centre of gravity for the given polygon. 
 
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer N (3 <= N <= 1000000) indicating the number of points that form the polygon. This is followed by N lines, each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are the coordinates of the i-th point. When we connect the points in the given order, we get a polygon. You may assume that the edges never touch each other (except the neighboring ones) and that they never cross. The area of the polygon is never zero, i.e. it cannot collapse into a single line. 
 
Output
Print exactly one line for each test case. The line should contain exactly two numbers separated by one space. These numbers are the coordinates of the centre of gravity. Round the coordinates to the nearest number with exactly two digits after the decimal point (0.005 rounds up to 0.01). Note that the centre of gravity may be outside the polygon, if its shape is not convex. If there is such a case in the input data, print the centre anyway. 
 
Sample Input
2
4
5 0
0 5
-5 0
0 -5
4
1 1
11 1
11 11
1 11
 
Sample Output
0.00 0.00
6.00 6.00
 
Source
 
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 1000009
#define N 21
#define MOD 1000000
#define INF 1000000009
const double eps = 1e-;
const double PI = acos(-1.0);
/*
所有线段投射到给定线段上取交集,如果交集距离大于eps 存在!s
*/
int sgn(double x)
{
if (fabs(x) < eps) return ;
if (x < ) return -;
else return ;
}
struct Point
{
double x, y;
Point() {}
Point(double _x, double _y) :x(_x), y(_y) {}
Point operator - (const Point& r)const
{
return Point(x - r.x, y - r.y);
}
double operator ^(const Point& r)const
{
return x*r.y - y*r.x;
}
double operator * (const Point& r)const
{
return x*r.x + y*r.y;
}
};
double dist(Point a, Point b)
{
return sqrt((a - b)*(a - b));
}
struct Line
{
Point s, e;
Line() {}
Line(Point _a, Point _B) :s(_a), e(_B) {}
};
bool Seg_inter_line(Line l1, Line l2)
{
return sgn((l2.s - l1.e) ^ (l1.s - l1.e))*sgn((l2.e - l1.e) ^ (l1.s - l1.e)) <= ;
}
bool cross(Line l1, Line l2)
{
return
max(l1.s.x, l1.e.x) >= min(l2.s.x, l2.e.x) &&
max(l2.s.x, l2.e.x) >= min(l1.s.x, l1.e.x) &&
max(l1.s.y, l1.e.y) >= min(l2.s.y, l2.e.y) &&
max(l2.s.y, l2.e.y) >= min(l1.s.y, l1.e.y) &&
sgn((l2.s - l1.e) ^ (l1.s - l1.e))*sgn((l2.e - l1.e) ^ (l1.s - l1.e)) <= &&
sgn((l1.s - l2.e) ^ (l2.s - l2.e))*sgn((l1.e - l2.e) ^ (l2.s - l2.e)) <= ;
}
Point a[MAXN];
double CalcArea(Point p[], int n)
{
double res = ;
for (int i = ; i < n; i++)
res += (p[i] ^ p[(i + ) % n]) / ;
return fabs(res);
}
bool isconvex(Point p[], int n)
{
bool s[];
memset(s, false, sizeof(s));
for (int i = ; i < n; i++)
{
s[sgn((p[(i + ) % n] - p[i]) ^ (p[(i + ) % n] - p[i])) + ] = true;
if (s[] && s[])
return false;
}
return true;
}
double ci[MAXN];
Point ti[MAXN];
Point Calgravitycenter(Point p[], int n)
{
Point res(, );
double area = ;
for (int i = ; i < n; i++)
{
ci[i] = (p[i] ^ p[(i + ) % n]) ;
ti[i].x = (p[i].x + p[(i + ) % n].x);
ti[i].y = (p[i].y + p[(i + ) % n].y);
res.x += ti[i].x * ci[i];
res.y += ti[i].y * ci[i];
area += ci[i]/;
}
res.x /= (*area);
res.y /= (*area);
return res;
}
int main()
{
int T,n;
scanf("%d", &T);
while (T--)
{
scanf("%d", &n);
for (int i = ; i < n; i++)
scanf("%lf%lf", &a[i].x, &a[i].y);
Point ans = Calgravitycenter(a, n);
printf("%.2lf %.2lf\n", ans.x, ans.y);
} }

Lifting the Stone 计算几何 多边形求重心的更多相关文章

  1. Lifting the Stone(hdu1115)多边形的重心

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...

  2. POJ 1385 Lifting the Stone (多边形的重心)

    Lifting the Stone 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/G Description There are ...

  3. poj 1115 Lifting the Stone 计算多边形的中心

    Lifting the Stone Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  4. 多边形求重心 HDU1115

    http://acm.hdu.edu.cn/showproblem.php?pid=1115 引用博客:https://blog.csdn.net/ysc504/article/details/881 ...

  5. hdu1115【多边形求重心模板】

    1.质量集中在顶点上.n个顶点坐标为(xi,yi),质量为mi,则重心(∑( xi×mi ) / ∑mi, ∑( yi×mi ) / ∑mi) 2.质量分布均匀.这个题就是这一类型,算法和上面的不同. ...

  6. POJ1385 Lifting the Stone 多边形重心

    POJ1385 给定n个顶点 顺序连成多边形 求重心 n<=1e+6 比较裸的重心问题 没有特别数据 由于答案保留两位小数四舍五入 需要+0.0005消除误差 #include<iostr ...

  7. hdu 1115 Lifting the Stone

    题目链接:hdu 1115 计算几何求多边形的重心,弄清算法后就是裸题了,这儿有篇博客写得很不错的: 计算几何-多边形的重心 代码如下: #include<cstdio> #include ...

  8. hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. Lifting the Stone(求多边形的重心—)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...

随机推荐

  1. js的45个技巧

    JavaScript是一个绝冠全球的编程语言,可用于Web开发.移动应用开发(PhoneGap.Appcelerator).服务器端开发(Node.js和Wakanda)等等.JavaScript还是 ...

  2. codevs1993 草地排水(最大流)

    1993 草地排水 USACO  时间限制: 2 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond   题目描述 Description 在农夫约翰的农场上,每逢下雨,Bes ...

  3. jmeter关联、下载文件、简单压测

    关联 一.什么是关联 关联是请求与请求之间存在数据依赖关系,需要从上一个请求获取下一个请求需要回传回去的数据. 简单地说就是在测试过程中有些数据的值会经常发生变化,要获取并使用这些数据,把这个动态的信 ...

  4. 【HTML5】基于HTML5的高性能动画与游戏

    其实这篇文章类似版本早在12年就在网上各处出现了,也随着HTML5的兴起,HTML的新特性也是倍受开发者们追捧,自然相关HTML5的高性能动画与游戏的相关文章也是层出不穷的,笔者也是在12年接触的相关 ...

  5. Java中static方法

    今天学习到了并且应用到了java中的静态方法,并且了解到它的好处与缺点. ● 生命周期(Lifecycle): 静态方法(Static Method)与静态成员变量一样,属于类本身,在类装载的时候被装 ...

  6. JS中的面相对象

    1.使用Object或对象字面量创建对象 JS中最基本创建对象的方式: var student = new Object(); student.name = "easy"; stu ...

  7. 设计模式 Singleton 单例 懒汉,线程安全

    首先来明确一个问题,那就是在某些情况下,有些对象,我们只需要一个就可以了, 比如,一台计算机上可以连好几个打印机,但是这个计算机上的打印程序只能有一个, 这里就可以通过单例模式来避免两个打印作业同时输 ...

  8. favourite和favorite的区别

    同一个词,英式和美式的拼写法而已.通常英式英语里的-our-字母组合,到了美式英语里面都成了-or-字母组合,最常见的有英式的 colour,到美式英语成了 color.

  9. Boost Bimap示例

    #include <string> #include <iostream> #include <boost/bimap.hpp> template< clas ...

  10. 【Spring】AOP

    AOP 编程允许你把遍布应用各处的功能分离出来形成可重用的组件,将安全.事务和日志关注点与你的核心业务逻辑相分离. 面向切面编程往往被定义为促使应用程序分离关注点的一项技术.系统由许多不同组件组成,每 ...