Description

Given a map of islands and bridges that connect these islands, a Hamilton path, as we all know, is a path along the bridges such that it visits each island exactly once. On our map, there is also a positive integer value associated with each island. We call a Hamilton path the best triangular Hamilton path if it maximizes the value described below.

Suppose there are n islands. The value of a Hamilton path C1C2...Cn is calculated as the sum of three parts. Let Vi be the value for the island Ci. As the first part, we sum over all the Vi values for each island in the path. For the second part, for each edge CiCi+1 in the path, we add the product ViVi+1. And for the third part, whenever three consecutive islands CiCi+1Ci+2 in the path forms a triangle in the map, i.e. there is a bridge between Ci and Ci+2, we add the product ViVi+1*Vi+2.

Most likely but not necessarily, the best triangular Hamilton path you are going to find contains many triangles. It is quite possible that there might be more than one best triangular Hamilton paths; your second task is to find the number of such paths.

Input

The input file starts with a number q (q<=20) on the first line, which is the number of test cases. Each test case starts with a line with two integers n and m, which are the number of islands and the number of bridges in the map, respectively. The next line contains n positive integers, the i-th number being the Vi value of island i. Each value is no more than 100. The following m lines are in the form x y, which indicates there is a (two way) bridge between island x and island y. Islands are numbered from 1 to n. You may assume there will be no more than 13 islands.

Output

For each test case, output a line with two numbers, separated by a space. The first number is the maximum value of a best triangular Hamilton path; the second number should be the number of different best triangular Hamilton paths. If the test case does not contain a Hamilton path, the output must be `0 0'.

Note: A path may be written down in the reversed order. We still think it is the same path.

Sample Input

2

3 3

2 2 2

1 2

2 3

3 1

4 6

1 2 3 4

1 2

1 3

1 4

2 3

2 4

3 4

Sample Output

22 3

69 1

Solution

一看数据(13)就知道是状压。。。

分析题目发现需要知道前两个岛是什么,那就暴力枚举就好了

最后统计最大值与对应方案(方案数跟据题目要求要/2)

注意特判1qwq

Code

//By Menteur_Hxy
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define M(a,b) memset(a,(b),sizeof(a))
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
using namespace std;
typedef long long LL; LL read() {
LL x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f; c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
} int n,m;
int val[13],edg[13][13];
LL dp[1<<13][13][13],num[1<<13][13][13]; int main() {
int T=read();
while(T--) {
M(edg,0);M(dp,-1);M(num,0);
n=read(),m=read();
F(i,0,n-1) val[i]=read();
if(n==1) {printf("%d 1\n",val[0]);continue;}// WA*1
F(i,1,m) {int u=read()-1,v=read()-1;
edg[u][v]=edg[v][u]=1;
}
F(i,0,n-1) F(j,0,n-1) if(i!=j && edg[i][j])
dp[(1<<i)|(1<<j)][i][j]=val[i]+val[j]+val[i]*val[j],num[(1<<i)|(1<<j)][i][j]=1;
F(i,0,(1<<n)-1) F(j,0,n-1) if((1<<j)&i)
F(k,0,n-1) if(edg[j][k] && j!=k && (i&(1<<k)) && dp[i][j][k]!=-1)
F(x,0,n-1) if(edg[k][x] && k!=x && j!=x && !(i&(1<<x))) {
int tmp=dp[i][j][k]+val[x]+val[k]*val[x];
if(edg[j][x]) tmp+=val[j]*val[k]*val[x];
if(dp[i|(1<<x)][k][x]<tmp) {
dp[i|(1<<x)][k][x]=tmp;
num[i|(1<<x)][k][x]=num[i][j][k];
} else if(dp[i|(1<<x)][k][x]==tmp)
num[i|(1<<x)][k][x]+=num[i][j][k];
}
LL ans1=0,ans2=0;
F(i,0,n-1) F(j,0,n-1) if(i!=j && edg[i][j]) {
if(ans1<dp[(1<<n)-1][i][j]) ans1=dp[(1<<n)-1][i][j],ans2=num[(1<<n)-1][i][j];
else if(ans1==dp[(1<<n)-1][i][j]) ans2+=num[(1<<n)-1][i][j];
}
printf("%lld %lld\n",ans1,ans2>>1);
}
return 0;
}

[poj2288] Islands and Bridges (状压dp)的更多相关文章

  1. poj 2288 Islands and Bridges ——状压DP

    题目:http://poj.org/problem?id=2288 状压挺明显的: 一开始写了(记忆化)搜索,但一直T: #include<iostream> #include<cs ...

  2. poj 2288 Islands and Bridges——状压dp(哈密尔顿回路)

    题目:http://poj.org/problem?id=2288 不知为什么记忆化搜索就是WA得不得了! #include<iostream> #include<cstdio> ...

  3. Islands and Bridges(POJ2288+状压dp+Hamilton 回路)

    题目链接:http://poj.org/problem?id=2288 题目: 题意:求Hamilton 路径权值的最大值,且求出有多少条权值这么大的Hamilton路径. 思路:状压dp,dp[i] ...

  4. CH0103最短Hamilton路径 & poj2288 Islands and Brigdes【状压DP】

    虐狗宝典学习笔记: 取出整数\(n\)在二进制表示下的第\(k\)位                                                    \((n >> ...

  5. 状压DP天秀

    状压DP,依靠的是把状态用某种压缩方式表示出来进而DP,大多数时候是二进制状压. 直接看例题吧. 一双木棋     九尾狐吃棉花糖     islands and bridges 愤怒的小鸟   芯片 ...

  6. 状压dp之位运算

    ## 一.知识 1.我们知道计算机中数据由二进制数存储,一个二进制数的一位就是计算机中数据的最小单位bit,我们有一种运算符可直接对二进制数进行位运算,所以它的速度很快. 2.C++中的位运算符有6种 ...

  7. BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS

    BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS Description Farmer John has taken the cows to a va ...

  8. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  9. nefu1109 游戏争霸赛(状压dp)

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...

随机推荐

  1. Oracle-表更名、转存数据

    --更名 ALTER TABLE T_LOGSRV_SERVICE RENAME TO T_LOGSRV_SERVICE_20170418_BAK; --创建同样的表 ;

  2. expdp impdp 数据库导入导出命令具体解释

    一.创建逻辑文件夹,该命令不会在操作系统创建真正的文件夹.最好以system等管理员创建. create directory dpdata1 as 'd:\test\dump'; 二.查看管理理员文件 ...

  3. php抓取网页

    用php抓取页面的内容在实际的开发其中是很实用的,如作一个简单的内容採集器,提取网页中的部分内容等等.抓取到的内容在通过正則表達式做一下过滤就得到了你想要的内容.下面就是几种经常使用的用php抓取网页 ...

  4. 寻找不到iframe元素

    一直找不到元素,是因为有两层iframe的 找iFrame元素方法如下 1.iFrame有ID 或者 name的情况//进入id="frame1"的frame中,定位id=&quo ...

  5. JS清除选择内容的方法

    本文实例讲述了JS清除选择内容的方法.分享给大家供大家参考.具体分析如下: 今天在做一个DIV拖动的效果,发现在拖动的时候会选中页面中的文本,于是找了一下JS清除选择的内容的相关信息. 在得到的结果中 ...

  6. SDUT 1500-Message Flood(set)

    Message Flood Time Limit: 1500ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描写叙述 Well, how do you feel abo ...

  7. 屏幕測试亮点,新买了一个显示器,使用web简单的測试下了亮点

    1,购买了一个新的显示器 趁着双11的时候价格廉价.入手了一个显示器. http://serve.netsh.org/pub/dead_pixel.bin 滚动下就能够换颜色了.把chrome最大化, ...

  8. JavaScript 和Ajax跨域问题

    json格式: { "message":"获取成功", "state":"1", "result": ...

  9. Android requires compiler compliance level 5.0 or 6.0. Found &#39;1.4&#39; instead的解决的方法

    今天在eclipse里报这个错误:   Android requires compiler compliance level 5.0 or 6.0. Found '1.4' instead. Plea ...

  10. luogu3807 【模板】 卢卡斯定理

    题目大意 对于一个很大的$n,m,p$如何求$C_{n+m}^m\mod p$? Lucas定理 若$n_i,m_i$分别是$n,m$在$p$进制下第$i$位的数字,则有 $$C_n^m\mod p= ...