题目大意:给出一颗无根树和每条边的权值,求出树上两个点之间距离<=k的点的对数。

思路:树的点分治。利用递归和求树的重心来解决这类问题。由于满足题意的点对一共仅仅有两种:

1.在以该节点的子树中且不经过该节点。

2.路径经过该节点。

对于第一种点,我们递归处理;另外一种点。我们能够将全部子树的节点到这个子树的根节点的距离处理出来,然后排序处理出满足要求的点对的个数。

依照正常的树的结构来切割子树,这种做法的时间复杂度肯定是不好看的,为了让子树大小尽量同样。我们每次处理这个子树前找到这个子树的重心,把这个重心当为根,然后在切割子树,这样时间复杂度最坏会降到O(nlog^2n)。

CODE:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 20010
#define INF 0x3f3f3f3f
using namespace std; int points,edges,k;
int head[MAX],total;
int next[MAX << 1],aim[MAX << 1],length[MAX << 1]; int cnt[MAX],c; //每一个子树中经过根节点的满足条件的对数
int size[MAX],_size,dis[MAX],p;
int _total;
bool v[MAX]; inline void Initialize();
inline void Add(int x,int y,int len);
void Work(int x);
void GetRoot(int x,int last);
inline int Count(int x,int len);
void GetDis(int x,int last,int len); int main()
{
while(scanf("%d%d",&points,&k),points + k) {
Initialize();
for(int x,y,z,i = 1;i < points; ++i) {
scanf("%d%d%d",&x,&y,&z);
Add(x,y,z),Add(y,x,z);
}
Work(1);
int ans = 0;
for(int i = 1;i <= points; ++i)
ans += cnt[i];
printf("%d\n",ans);
}
return 0;
} inline void Initialize()
{
total = 0;
memset(head,0,sizeof(head));
memset(v,false,sizeof(v));
} inline void Add(int x,int y,int len)
{
next[++total] = head[x];
aim[total] = y;
length[total] = len;
head[x] = total;
} void Work(int x)
{
_size = INF;
_total = size[x] ? size[x]:points;
GetRoot(x,0);
x = c;
v[x] = true;
cnt[x] = Count(x,0);
for(int i = head[x];i;i = next[i]) {
if(v[aim[i]]) continue;
cnt[x] -= Count(aim[i],length[i]);
Work(aim[i]);
}
} void GetRoot(int x,int last)
{
size[x] = 1;
int max_size = 0;
for(int i = head[x];i;i = next[i]) {
if(v[aim[i]] || aim[i] == last) continue;
GetRoot(aim[i],x);
size[x] += size[aim[i]];
max_size = max(max_size,size[aim[i]]);
}
max_size = max(max_size,_total - size[x]);
if(max_size < _size)
_size = max_size,c = x;
} inline int Count(int x,int len)
{
int re = 0;
p = 0;
GetDis(x,0,len);
sort(dis,dis + p);
int l = 0,r = p - 1;
while(l < r) {
if(dis[l] + dis[r] <= k)
re += (r - l),l++;
else r--;
}
return re;
} void GetDis(int x,int last,int len)
{
dis[p++] = len;
for(int i = head[x];i;i = next[i]) {
if(aim[i] == last || v[aim[i]]) continue;
GetDis(aim[i],x,len + length[i]);
}
}

POJ 1741 Tree 树的分治(点分治)的更多相关文章

  1. poj 1741 Tree (树的分治)

    Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 30928   Accepted: 10351 Descriptio ...

  2. POJ 1741.Tree 树分治 树形dp 树上点对

    Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 24258   Accepted: 8062 Description ...

  3. POJ 1741 Tree 树的分治

    原题链接:http://poj.org/problem?id=1741 题意: 给你棵树,询问有多少点对,使得这条路径上的权值和小于K 题解: 就..大约就是树的分治 代码: #include< ...

  4. POJ 1741 Tree 树分治

    Tree     Description Give a tree with n vertices,each edge has a length(positive integer less than 1 ...

  5. POJ 1741 Tree(树的点分治,入门题)

    Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 21357   Accepted: 7006 Description ...

  6. poj 1741 Tree(树的点分治)

    poj 1741 Tree(树的点分治) 给出一个n个结点的树和一个整数k,问有多少个距离不超过k的点对. 首先对于一个树中的点对,要么经过根结点,要么不经过.所以我们可以把经过根节点的符合点对统计出 ...

  7. POJ 1741.Tree and 洛谷 P4178 Tree-树分治(点分治,容斥版) +二分 模板题-区间点对最短距离<=K的点对数量

    POJ 1741. Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 34141   Accepted: 11420 ...

  8. POJ 1741 Tree 求树上路径小于k的点对个数)

                                                                                                 POJ 174 ...

  9. POJ 1741 Tree (树的分治,树的重心)

    题意:给一棵树,n个节点,给定一个数k,求任意满足dist(a,b)<=k的点对的数量. 思路: 这道题的思路比较简单,但是细节很多. 此题可以用分治法,如何分治? (1)如果path(a,b) ...

随机推荐

  1. 2019-03-28 SQL Server Pivot

    --现在我们是用PIVOT函数将列[WEEK]的行值转换为列,并使用聚合函数Count(TotalPrice)来统计每一个Week列在转换前有多少行数据,语句如下所示 select * from Sh ...

  2. React基础知识点全解

    •      propTypes.defaultProps 作为 properties 定义,也可以在组件外部通过键值对方式进行设置. •      设置组件初始的 state不支持 getIniti ...

  3. python爬虫 分页获取图片并下载

    --刚接触python2天,想高速上手,就写了个爬虫,写完之后,成就感暴增,用起来顺手多了. 1.源代码 #coding=utf-8 import urllib import re class Pag ...

  4. ThinkPHP5.0框架开发实现简单的页面跳转

    ThinkPHP5.0框架开发实现简单的页面跳转 一.效果 登录界面 登录成功界面 登录失败界面 二.目录结构 三.代码 控制器中的Login.php <?php // 声明命名空间 names ...

  5. Linux就该这么学 20181004(第六章磁盘管理)

    参考链接https://www.linuxprobe.com/ /boot 开机锁需要文件-内核.开机菜单以及所需配置文件 /dev 以文件形式存放的任何设备与接口 /etc 配置文件 /home 用 ...

  6. rails数据库操作rake db一点心得

    问题描述,对于很多的新手rails lover来说,搞定db是件头疼的事情,当建立了一个model,测试了半天发现我草列名写错了,再过一会儿发现association里面竟然没有xxx_id,这下子s ...

  7. MYSQL INT(N)以及zerofill的使用区别

    MYSQL中,int(n)括号里面的数据n无论写成多少,都是占4个字节的空间,最多能够存10位数.N不代表能够存多少位数,显示宽度M与数据所占用空间,数值的范围无关. 如果在定义字段的时候指定zero ...

  8. 一天一个算法:C语言解答杨辉三角

    杨辉三角形是形如:11   11   2   11   3   3   11   4   6   4   1的三角形,其实质是二项式(a+b)的n次方展开后各项的系数排成的三角形,它的特点是左右两边全 ...

  9. 在MyEclipse里连接Tomcat部署到项目(maven项目和web项目都适用)

    前提, Tomcat *的下载(绿色版和安装版都适用) Tomcat *的安装和运行(绿色版和安装版都适用) Tomcat的配置文件详解 在Eclipse里连接Tomcat部署到项目(maven项目和 ...

  10. Wordcount 和 shuffle的流程