今天A了张子苏大神的的题,感觉神清气爽。

一篇对于多层nim博弈讲的很透彻的博文:http://acm.hdu.edu.cn/forum/read.php?fid=9&tid=10617

我来整理一下:

问题1:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根, 可将一堆全取走,但不可不取,最后取完者为胜,求必胜的方法。 

定义:若所有火柴数异或为0,则该状态被称为利他态,用字母T表示;否则, 为利己态,用S表示。

注意:这篇博文是先定义s和t,再通过它们的性质推出结论。

[定理1]:对于任何一个S态,总能从一堆火柴中取出若干个使之成为T态。

证明:

  1. 若有n堆火柴,每堆火柴有A(i)根火柴数,那么既然现在处于S态, c = A(1) xor A(2) xor … xor A(n) > 0;
  2. 把c表示成二进制,记它的二进制数的最高位为第p位,则必然存在一个A(t),它二进制的第p位也是1。(否则,若所有的A(i)的第p位都是0,这与c的第p位就也为0矛盾)。
  3. 那么我们把x = A(t) xor c,则得到x < A(t).这是因为既然A(t)的第p位与c的第p位同为1,那么x的第p位变为0,而高于p的位并没有改变。所以x < A(t).而
  4. A(1) xor A(2) xor … xor x xor … xor A(n)
  5. = A(1) xor A(2) xor … xor A(t) xor c xor … xor A(n)
  6. = A(1) xor A(2) xor… xor A(n) xor A(1) xor A(2) xor … xor A(n)
  7. = 0
  8. 这就是说从A(t)堆中取出 A(t) - x 根火柴后状态就会从S态变为T态。证毕。

[定理2]:T态,取任何一堆的若干根,都将成为S态。

  1. 证明:用反证法试试。
  2. c = A(1) xor A(2) xor … xor A(i) xor … xor A(n) = 0;
  3. c' = A(1) xor A(2) xor … xor A(i') xor … xor A(n) = 0;
  4. 则有:
  5. c xor c' = A(1) xor A(2) xor … xor A(i) xor … xor A(n) xor A(1) xor A(2) xor … xor A(i')  xor … xor A(n) = A(i) xor A(i') =0
  6. 进而推出A(i) = A(i'),这与已知矛盾。所以命题得证。

[定理 3]:S态,只要方法正确,必赢。

  1. 最终胜利即由S态转变为T态,任何一个S态,只要把它变为T态,(由定理1,可以把它变成T态。)对方只能把T态转变为S态(定理2)。这样,所有S态向T态的转变都可以有己方控制,对方只能被动地实现由T态转变为S态。因为全零属于T态,故S态必赢。(不能单单从对称拿取来考虑这个问题。例如a=b xor c,然后求sg这种情况。因为证不出来。。定理1只是说存在这种情况,并没有说对称拿取。)

[定理4]:T态,只要对方法正确,必败。

  1. 由定理3易得。

问题2:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根, 可将一堆全取走,但不可不取,最后取完者为负,求必胜的方法。

【未完待续】

博弈论-一堆nim博弈合在一起的更多相关文章

  1. 博弈论中的Nim博弈

    瞎扯 \(orzorz\) \(cdx\) 聚聚给我们讲了博弈论.我要没学上了,祝各位新年快乐.现在让我讲课我都不知道讲什么,我会的东西大家都会,太菜了太菜了. 马上就要回去上文化课了,今明还是收下尾 ...

  2. Being a Good Boy in Spring Festival 博弈论 Nim博弈

    易游戏雷火盘古校园招聘开始! kiki's game Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 40000/10000 K (Ja ...

  3. HDU 2509 Nim博弈变形

    1.HDU 2509  2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...

  4. HDU 1907 Nim博弈变形

    1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...

  5. 关于NIM博弈结论的证明

    关于NIM博弈结论的证明 NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人 ...

  6. HDU - 1850 Nim博弈

    思路:可以对任意一堆牌进行操作,根据Nim博弈定理--所有堆的数量异或值为0就是P态,否则为N态,那么直接对某堆牌操作能让所有牌异或值为0即可,首先求得所有牌堆的异或值,然后枚举每一堆,用已经得到的异 ...

  7. HDU 2176:取(m堆)石子游戏(Nim博弈)

    取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  8. hdu 1730 Nim博弈

    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1730 Nim博弈为:n堆石子,每个人可以在任意一堆中取任意数量的石子 n个数异或值为0就后手赢,否则先 ...

  9. POJ 2234 Matches Game(Nim博弈裸题)

    Description Here is a simple game. In this game, there are several piles of matches and two players. ...

随机推荐

  1. 如何通过ISO安装win7程序

    从下载u启动工具到安装Ghost Win7系统教程 来源:http://www.uqidong.com时间:2013-08-12 09:17:38 怎样用u启动u盘启动盘安装ghost系统?u启动制作 ...

  2. java基础知识(15)----StringBuffer与StringBuilder

    StringBuffer字符串缓冲区: 构造一个其中不带字符的字符串缓冲区,初始容量为 16 个字符.特点:1:可以对字符串内容进行修改.2:是一个容器.3:是可变长度的.4:缓冲区中可以存储任意类型 ...

  3. Word中调整编号和文字的间距

    鼠标放在节文字上,不用选择该级别的所有节点,直接在某一节上右键-段落-制表位-默认制表位-设置1字符或其它.完成后该级别所有节的格式都自动调整,不用一个个调整. 但是设置其它段落格式还是需要在菜单上选 ...

  4. 10-24C#基础--枚举

    一.枚举 1.定义:在程序编写中,枚举同结构体是并列的,位于Class下面:枚举是常量的集合. enum meiju://枚举是常量的集合,一般冒号后面不指定数据类型 2.格式: enum meiju ...

  5. 问题:Oracle出发器;结果:1、Oracle触发器详解,2、Oracle触发器示例

    ORACLE触发器详解 本篇主要内容如下: 8.1 触发器类型 8.1.1 DML触发器 8.1.2 替代触发器 8.1.3 系统触发器 8.2 创建触发器 8.2.1 触发器触发次序 8.2.2 创 ...

  6. 具有避障和寻线功能的Arduino小车

    标签:  Arduino  乐高  机器人 创客对于成年人来说,多半是科技娱乐,或者是一种是一种向往科技的人生态度,总是希望自己不仅可以看到或者听到科技的资讯,还希望能够亲身制作科技玩意,从而更好地体 ...

  7. UML设计九种图例

    一.作为一种建模语言,UML的定义包括UML语义和UML表示法两个部分. UML语义:描述基于UML的精确元模型定义. UML表示法:定义UML符号的表示法,为开发者或开发工具使用这些图形符号和文本语 ...

  8. JS中,根据div数值判断弹出窗口

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  9. [Python Study Notes]计算器

    # ------------------------------------------------------------------------------------- # @文件: 计算器.p ...

  10. css中的hack

    1.什么是CSS hack? CSS hack是通过在CSS样式中加入一些特殊的符号,让不同的浏览器识别不同的符号(什么样的浏览器识别什么样的符号是有标准的,CSS hack就是让你记住这个标准),以 ...