今天A了张子苏大神的的题,感觉神清气爽。

一篇对于多层nim博弈讲的很透彻的博文:http://acm.hdu.edu.cn/forum/read.php?fid=9&tid=10617

我来整理一下:

问题1:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根, 可将一堆全取走,但不可不取,最后取完者为胜,求必胜的方法。 

定义:若所有火柴数异或为0,则该状态被称为利他态,用字母T表示;否则, 为利己态,用S表示。

注意:这篇博文是先定义s和t,再通过它们的性质推出结论。

[定理1]:对于任何一个S态,总能从一堆火柴中取出若干个使之成为T态。

证明:

  1. 若有n堆火柴,每堆火柴有A(i)根火柴数,那么既然现在处于S态, c = A(1) xor A(2) xor … xor A(n) > 0;
  2. 把c表示成二进制,记它的二进制数的最高位为第p位,则必然存在一个A(t),它二进制的第p位也是1。(否则,若所有的A(i)的第p位都是0,这与c的第p位就也为0矛盾)。
  3. 那么我们把x = A(t) xor c,则得到x < A(t).这是因为既然A(t)的第p位与c的第p位同为1,那么x的第p位变为0,而高于p的位并没有改变。所以x < A(t).而
  4. A(1) xor A(2) xor … xor x xor … xor A(n)
  5. = A(1) xor A(2) xor … xor A(t) xor c xor … xor A(n)
  6. = A(1) xor A(2) xor… xor A(n) xor A(1) xor A(2) xor … xor A(n)
  7. = 0
  8. 这就是说从A(t)堆中取出 A(t) - x 根火柴后状态就会从S态变为T态。证毕。

[定理2]:T态,取任何一堆的若干根,都将成为S态。

  1. 证明:用反证法试试。
  2. c = A(1) xor A(2) xor … xor A(i) xor … xor A(n) = 0;
  3. c' = A(1) xor A(2) xor … xor A(i') xor … xor A(n) = 0;
  4. 则有:
  5. c xor c' = A(1) xor A(2) xor … xor A(i) xor … xor A(n) xor A(1) xor A(2) xor … xor A(i')  xor … xor A(n) = A(i) xor A(i') =0
  6. 进而推出A(i) = A(i'),这与已知矛盾。所以命题得证。

[定理 3]:S态,只要方法正确,必赢。

  1. 最终胜利即由S态转变为T态,任何一个S态,只要把它变为T态,(由定理1,可以把它变成T态。)对方只能把T态转变为S态(定理2)。这样,所有S态向T态的转变都可以有己方控制,对方只能被动地实现由T态转变为S态。因为全零属于T态,故S态必赢。(不能单单从对称拿取来考虑这个问题。例如a=b xor c,然后求sg这种情况。因为证不出来。。定理1只是说存在这种情况,并没有说对称拿取。)

[定理4]:T态,只要对方法正确,必败。

  1. 由定理3易得。

问题2:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根, 可将一堆全取走,但不可不取,最后取完者为负,求必胜的方法。

【未完待续】

博弈论-一堆nim博弈合在一起的更多相关文章

  1. 博弈论中的Nim博弈

    瞎扯 \(orzorz\) \(cdx\) 聚聚给我们讲了博弈论.我要没学上了,祝各位新年快乐.现在让我讲课我都不知道讲什么,我会的东西大家都会,太菜了太菜了. 马上就要回去上文化课了,今明还是收下尾 ...

  2. Being a Good Boy in Spring Festival 博弈论 Nim博弈

    易游戏雷火盘古校园招聘开始! kiki's game Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 40000/10000 K (Ja ...

  3. HDU 2509 Nim博弈变形

    1.HDU 2509  2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...

  4. HDU 1907 Nim博弈变形

    1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...

  5. 关于NIM博弈结论的证明

    关于NIM博弈结论的证明 NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人 ...

  6. HDU - 1850 Nim博弈

    思路:可以对任意一堆牌进行操作,根据Nim博弈定理--所有堆的数量异或值为0就是P态,否则为N态,那么直接对某堆牌操作能让所有牌异或值为0即可,首先求得所有牌堆的异或值,然后枚举每一堆,用已经得到的异 ...

  7. HDU 2176:取(m堆)石子游戏(Nim博弈)

    取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  8. hdu 1730 Nim博弈

    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1730 Nim博弈为:n堆石子,每个人可以在任意一堆中取任意数量的石子 n个数异或值为0就后手赢,否则先 ...

  9. POJ 2234 Matches Game(Nim博弈裸题)

    Description Here is a simple game. In this game, there are several piles of matches and two players. ...

随机推荐

  1. 很详细的Nginx配置说明

    这篇文章主要为大家分享了一篇很详细的Nginx配置说明,主要内容包括Nginx常用功能.Nginx配置文件结构,想要了解Nginx配置的朋友不要错过,参考一下   Nginx是lgor Sysoev为 ...

  2. ListView显示Sqlite的数据

    在安卓中,ListView和Sqlite都是十分常用的.这次我们来结合这个两个知识点写一个Demo. 功能:吧SQLite中的数据用ListView显示出来. 先看截图吧 首先是数据库 然后是运行截图 ...

  3. MySQL中varchar类型排序

    -- +0后就转换INT类型排序 SELECT * FROM T_TEST ORDER BY (SORT + 0) DESC ;

  4. form表单提交target属性使用

    通过form表单提交刷新iframe <form action="doctor/selPackage" target="projectlistframe" ...

  5. Result Maps、Auto-mapping、cache

    1.  Result Maps resultMap元素是Mybatis里面最重要的并且功能最强大的一个元素.(The resultMapelement is the most important an ...

  6. LINUX中错误 SELinux is disabled

    解决: setenforce: SELinux is disabled 那么说明selinux已经被彻底的关闭了 如果需要重新开启selinux,请按下面步骤: vi /etc/selinux/con ...

  7. Codeforces 58E Expression (搜索)

    题意:给你一个可能不正确的算式a + b = c, 你可以在a,b,c中随意添加数字.输出一个添加数字最少的新等式x + y  = z; 题目链接 思路:来源于这片博客:https://www.cnb ...

  8. Ros问题汇总

    1.ImportError: No module named beginner_tutorials.srv 解决: cd ~/catkin_ws $ source devel/setup.bash $ ...

  9. Ros学习——创建程序包

      1.程序包 一个程序包要想称为catkin程序包必须符合以下要求: 该程序包必须包含catkin compliant package.xml文件 这个package.xml文件提供有关程序包的元信 ...

  10. Selenium二次封装-Python版本

    from selenium import webdriver from selenium.webdriver.support.wait import WebDriverWait from seleni ...