BZOJ1877 [SDOI2009]晨跑 【费用流】
题目
Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑、仰卧起坐等 等,不过到目前为止,他
坚持下来的只有晨跑。 现在给出一张学校附近的地图,这张地图中包含N个十字路口和M条街道,Elaxia只能从 一
个十字路口跑向另外一个十字路口,街道之间只在十字路口处相交。Elaxia每天从寝室出发 跑到学校,保证寝室
编号为1,学校编号为N。 Elaxia的晨跑计划是按周期(包含若干天)进行的,由于他不喜欢走重复的路线,所以
在一个周期内,每天的晨跑路线都不会相交(在十字路口处),寝室和学校不算十字路 口。Elaxia耐力不太好,
他希望在一个周期内跑的路程尽量短,但是又希望训练周期包含的天 数尽量长。 除了练空手道,Elaxia其他时间
都花在了学习和找MM上面,所有他想请你帮忙为他设计 一套满足他要求的晨跑计划。
输入格式
第一行:两个数N,M。表示十字路口数和街道数。
接下来M行,每行3个数a,b,c,表示路口a和路口b之间有条长度为c的街道(单向)。
N ≤ 200,M ≤ 20000。
输出格式
两个数,第一个数为最长周期的天数,第二个数为满足最长天数的条件下最短的路程长 度。
输入样例
7 10
1 2 1
1 3 1
2 4 1
3 4 1
4 5 1
4 6 1
2 5 5
3 6 6
5 7 1
6 7 1
输出样例
2 11
题解
拆点费用流
流量就是所求周期
费用即为路程长
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 505,maxm = 100005,INF = 0x7fffffff;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int N,M,h[maxn],ne = 0,S,T;
struct EDGE{int from,to,nxt,f; LL w;}ed[maxm];
inline void build(int u,int v,int f,LL w){
ed[ne] = (EDGE){u,v,h[u],f,w}; h[u] = ne++;
ed[ne] = (EDGE){v,u,h[v],0,-w}; h[v] = ne++;
}
int p[maxn],inq[maxn],minf[maxn];
LL d[maxn],flow = 0,cost = 0;
void maxcost(){
queue<int> q; int u,to;
while (true){
for (int i = 0; i <= T; i++) d[i] = INF;
minf[S] = INF; d[S] = 0; inq[S] = true; q.push(S);
while (!q.empty()){
u = q.front(); q.pop();
inq[u] = false;
Redge(u) if (ed[k].f && d[to = ed[k].to] > d[u] + ed[k].w){
d[to] = d[u] + ed[k].w; p[to] = k; minf[to] = min(ed[k].f,minf[u]);
if (!inq[to]) q.push(to),inq[to] = true;
}
}
if (d[T] == INF) break;
flow += minf[T]; cost += (LL)minf[T] * d[T];
u = T;
while (u != S){
ed[p[u]].f -= minf[T]; ed[p[u] ^ 1].f += minf[T];
u = ed[p[u]].from;
}
}
}
int main(){
memset(h,-1,sizeof(h));
N = RD(); M = RD(); S = 1; T = 2 * N; LL a,b,w;
for (int i = 2; i < N; i++) build(i,i + N,1,0);
build(1,1 + N,INF,0); build(N,N + N,INF,0);
while (M--){
a = RD(); b = RD(); w = RD();
build(a + N,b,1,w);
}
maxcost();
printf("%lld %lld",flow,cost);
return 0;
}
BZOJ1877 [SDOI2009]晨跑 【费用流】的更多相关文章
- 【bzoj1877】[SDOI2009]晨跑 费用流
题目描述 Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑. 现在给出一张学校附近的地图,这张地图中包含N个十字路口和M条街 ...
- BZOJ 1877: [SDOI2009]晨跑 费用流
1877: [SDOI2009]晨跑 Description Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑. 现在给出一 ...
- B1877 [SDOI2009]晨跑 费用流
其实之前写过一个板子,但是一点印象都没有,所以今天重写了一下,顺便把这个题当成板子就行了. 其实费用流就是把bfs换成spfa,但是中间有一个原则,就是费用优先,在费用(就是c)上跑spfa,顺便求出 ...
- bzoj1877: [SDOI2009]晨跑
挺裸的最小费用最大流... #include<cstdio> #include<queue> #include<cstring> #include<iostr ...
- 【费用流】BZOJ1877[SDOI2009]-晨跑
[题目大意] Elaxia每天从寝室出发跑到学校,保证寝室编号为1,学校编号为N. Elaxia的晨跑计划是按周期(包含若干天)进行的,由于他不喜欢走重复的路线,所以在一个周期内,每天的晨跑路线都不会 ...
- [SDOI2009][bzoj1877] 晨跑 [费用流]
题面: 传送门 思路: 一个点只能走一回,路径不能相交...... 显然可以转化为网络流的决策来做 我们构建一个网络,令其最大流等于最大的跑步天数即可 怎么构造呢? 对于每个点只能走一次的限制,可以考 ...
- 【BZOJ1877】[SDOI2009]晨跑 最小费用最大流
[BZOJ1877][SDOI2009]晨跑 Description Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑. 现 ...
- BZOJ 1877: [SDOI2009]晨跑( 最小费用最大流 )
裸的费用流...拆点, 流量限制为1, 最后的流量和费用即答案. ------------------------------------------------------------------- ...
- 【BZOJ1877】晨跑(费用流)
[BZOJ1877]晨跑(费用流) 题面 Description Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他 坚持下来的只有晨跑. 现在 ...
随机推荐
- windows服务器配置tomcat开机自动启动
背景:最近在做服务器部署的工作,开始的时候都是手动将tomcat进行启动的,但是在遇到几次服务器重启后发现这样太过麻烦,影响项目运行,故事就从这里开始了. 我们的项目是使用spring-boot进行开 ...
- 泉五培训Day2
T1 旅游 题目 [题目描述] 幻想乡有n个景点(从1开始标号),有m条双向的道路连在景点之间,每条道路有一个人气值d,表示这条道路的拥挤程度.小G不会经过那些人气值大于x的道路,她想知道有多少对景点 ...
- 1801: [Ahoi2009]chess 中国象棋
Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2520 Solved: 1524[Submit][Status][Discuss] Descripti ...
- linux redis5.0 集群搭建
一.下载 wget http://download.redis.io/releases/redis-5.0.0.tar.gz 二.解压.编译 #解押到 /usr/local/ 文件夹 tar -zxv ...
- SpringCloud微服务基础 Eureka、Feign、Ribbon、Zuul、Hystrix、配置中心的基础使用
1.单点系统架构 传统项目架构 传统项目分为三层架构,将业务逻辑层.数据库访问层.控制层放入在一个项目中. 优点:适合于个人或者小团队开发,不适合大团队开发. 分布式项目架构 根据业务需求进行拆分成N ...
- Struts2之基于配置的字段校验
上一篇struts2之输入校验介绍了手动完成输入校验,也即依靠重写validate方法和validateXxx方法,指定请求某个方法时对传入的参数进行校验. 本篇介绍基于配置的字段校验.下面是登录的常 ...
- Form表单提交,js验证
Form表单提交,js验证 1, Onclick() 2, Onsubmit() Button标签 input (属性 submit button )标签 Input type=button ...
- MySQL触发器和更新操作
一.触发器概念 触发器(trigger):监视某种情况,并触发某种操作,它是提供给程序员和数据分析员来保证数据完整性的一种方法,它是与表事件相关的特殊的存储过程,它的执行不是由程序调用,也不是手工启动 ...
- python 函数function
函数 当代码出现有规律的重复的时候,只写一次函数实现多次使用(调用) 可使用的函数: 自定义函数 内置函数:文档 https://docs.python.org/3/library/function ...
- Android面试收集录2 Broadcast Receiver详解
1.Broadcast Receiver广播接收器简单介绍 1.1.定义 Broadcast Receiver(广播接收器),属于Android四大组件之一 在Android开发中,Broadcast ...