题目:

题解:

bzoj 3302 == 2447 == 2103 三倍经验

首先我们考虑枚举两个中心的位置,然后统计答案.

我们发现,一定有一部分点离第一个中心更近,另一部分点离第二个中心更近

如果将两部分点分别染成两种颜色,容易发现一定有且只有一条边两端的颜色不相同

所以我们考虑枚举这条边,然后将整个树分成两个部分,然后分别求出分开的两颗树的中心,然后把两部分的代价求和来更新答案.

容易发现这样是\(n^2\)的

然后我们回头看题目,发现有奇怪的条件:深度 <= 100

这启发了我们从深度的角度去考虑.

我们考虑枚举这条边的过程,发现其实我们根本不用枚举所有的边

我们考虑在每一个深度上只枚举一条边

换句话说:我们要选择一条从根开始的链,枚举这条链上的每一条边

我们可以从根考虑来选择每一步走哪一棵子树,从而挑选出一条从根开始的链.

这是我们发现:每一次都走子树权值和最大的哪一棵子树,一定是最优决策.

所以我们可以把复杂度降到\(O(nh)\)

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(ll &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
typedef long long ll;
const ll maxn = 50005;
const ll inf = 1LL<<60;
struct Edge{
ll v,next;
}G[maxn<<1];
ll n, head[maxn], cnt=1,fa[maxn], dep[maxn], mx[maxn], cmx[maxn];
ll sum[maxn],val[maxn],ans=inf,cut;
inline void add(ll u, ll v) {
G[++cnt] = (Edge){v, head[u]};
head[u] = cnt;
}
inline void dfs(ll x) {
for(ll i = head[x];i; i=G[i].next){
if(G[i].v == fa[x]) continue;
dep[G[i].v] = dep[x] + 1;
fa[G[i].v] = x;
dfs(G[i].v);
sum[x] += sum[G[i].v];
val[x] += val[G[i].v] + sum[G[i].v];
if(mx[x] == 0 || sum[G[i].v] > sum[mx[x]]){
cmx[x] = mx[x];
mx[x] = G[i].v;
}else if(cmx[x] == 0 || sum[G[i].v] > sum[cmx[x]]){
cmx[x] = G[i].v;
}
}
}
inline void find(ll &ret,ll root,ll x,ll k){
ret = min(ret,k);
ll v = mx[x];
if(v == cut || sum[cmx[x]] > sum[mx[x]]) v = cmx[x];
if(v == 0) return;
find(ret,root,v, k + sum[root] - 2*sum[v]);
}
inline void dfss(ll x){
for(ll i = head[x];i;i=G[i].next){
if(G[i].v == fa[x]) continue;
cut = G[i].v;
ll gx = inf,gy = inf;
for(ll j = x; j; j = fa[j]) sum[j] -= sum[cut];
find(gx, 1, 1, val[1] - val[cut] - dep[cut] * sum[cut]);
find(gy, cut, cut, val[cut]);
ans = min(ans, gx + gy);
for(ll j = x; j; j=fa[j]) sum[j] += sum[cut];
dfss(G[i].v);
}
}
int main() {
read(n);
for(ll i=1,u,v;i<n;++i){
read(u);read(v);
add(u, v); add(v, u);
}
for(ll i=1;i<=n;++i) read(sum[i]);
dfs(1);dfss(1);
printf("%lld\n",ans);
getchar();getchar();
return 0;
}

bzoj 3302&2447&2103 树的双中心 树形DP的更多相关文章

  1. 51nod"省选"模测 A 树的双直径(树形dp)

    题意 题目链接 Sol 比赛结束后才调出来..不多说啥了,就是因为自己菜. 裸的up-down dp,维护一下一个点上下的直径就行,一开始还想了个假的思路写了半天.. 转移都在代码注释里 毒瘤题目卡空 ...

  2. bzoj 4871: [Shoi2017]摧毁“树状图”【树形dp】

    做不来--参考https://www.cnblogs.com/ezyzy/p/6784872.html #include<iostream> #include<cstdio> ...

  3. BZOJ3302: [Shoi2005]树的双中心

    BZOJ3302: [Shoi2005]树的双中心 https://lydsy.com/JudgeOnline/problem.php?id=3302 分析: 朴素算法 : 枚举边,然后在两个连通块内 ...

  4. 【BZOJ3302】[Shoi2005]树的双中心 DFS

    [BZOJ3302][Shoi2005]树的双中心 Description Input 第一行为N,1<N<=50000,表示树的节点数目,树的节点从1到N编号.接下来N-1行,每行两个整 ...

  5. 题解-SHOI2005 树的双中心

    SHOI2005 树的双中心 给树 \(T=(V,E)(|V|=n)\),树高为 \(h\),\(w_u(u\in V)\).求 \(x\in V,y\in V:\left(\sum_{u\in V} ...

  6. 【BZOJ】3302: [Shoi2005]树的双中心 && 2103: Fire 消防站 && 2447: 消防站

    [题意]给定带点权树,要求选择两个点x,y,满足所有点到这两个点中较近者的距离*点权的和最小.n<=50000,h<=100. [算法]树的重心 [题解]代码参考自:cgh_Andy 观察 ...

  7. BZOJ.2159.Crash的文明世界(斯特林数 树形DP)

    BZOJ 洛谷 挺套路但并不难的一道题 \(Description\) 给定一棵\(n\)个点的树和\(K\),边权为\(1\).对于每个点\(x\),求\(S(x)=\sum_{i=1}^ndis( ...

  8. hdu 4612 Warm up 双连通+树形dp思想

    Warm up Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Total S ...

  9. HDU 2242 考研路茫茫—空调教室 (边双连通+树形DP)

    <题目链接> 题目大意: 给定一个连通图,每个点有点权,现在需要删除一条边,使得整张图分成两个连通块,问你删除这条边后,两联通块点权值和差值最小是多少. 解题分析: 删除一条边,使原连通图 ...

随机推荐

  1. Python中使用__new__实现单例模式并解析

    阅读文章前请先阅读 Python中类方法.__new__方法和__init__方法解析 单例模式是一个经典设计模式,简要的说,一个类的单例模式就是它只能被实例化一次,实例变量在第一次实例化时就已经固定 ...

  2. python is == 的区别, 编码与解码.深浅拷贝

    一. is  ==  的区别 双等表示的是判断是否相等, 注意. 这个双等比较的是具体的值.而不是内存地址 is 比较的是地址 编码回顾 除了了ASCII码以外, 其他信息不能直接转换 编码和解码的时 ...

  3. 做完task1-21的阶段总结

    [说明]这是自注册修真院的第七天,也是第七篇日报,觉得是一个好的时机总结一下. 因为任务一虽然看起来仅仅是“完成学员报名的DB设计并读写数据库”,但是做了几天之后就发现在任务“搭建自己的服务器”之前的 ...

  4. 【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元

    [BZOJ4004][JLOI2015]装备购买 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 ( ...

  5. 查看Android.mk文件中的变量的值

    当某个Android.mk中包含如下: LOCAL_PATH := $(call my-dir) include $(CLEAR_VARS) LOCAL_C_INCLUDES += \ $(LOCAL ...

  6. nginx学习之压缩解压篇(七)

    1.简介 压缩响应可以减少传输数据的大小,节省带宽.但过多的压缩会造成很大的处理开销.在发送给客户端之前,nginx会对响应做压缩,但是如果后端服务器已经 压缩过了,nginx就不再压缩. 2.开启压 ...

  7. 创建第一个SpringBoot的demo程序

    在这里,我只介绍手动创建的其中一种方式. 默认,你已经安装了IntelliJ IDEA和JDK1.8,如果没有,请先安装.   第一步:选择新建一个项目 File-->New-->Proj ...

  8. Linux内核设计基础(九)之进程管理和调度

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/BlueCloudMatrix/article/details/30799225 在Linux中进程用 ...

  9. python2 生成验证码图片

    使用pillow或者pil库编写 #coding:utf-8 #use pillow or pil try: from PIL import Image, ImageDraw, ImageFont, ...

  10. Kindeditor 编辑区样式结构

    ke-container   ke-toolbar   ke-edit   ke-edit-iframe   ke-edit-area   ke-statusbar