bzoj 3302&2447&2103 树的双中心 树形DP
题目:
题解:
bzoj 3302 == 2447 == 2103 三倍经验
首先我们考虑枚举两个中心的位置,然后统计答案.
我们发现,一定有一部分点离第一个中心更近,另一部分点离第二个中心更近
如果将两部分点分别染成两种颜色,容易发现一定有且只有一条边两端的颜色不相同
所以我们考虑枚举这条边,然后将整个树分成两个部分,然后分别求出分开的两颗树的中心,然后把两部分的代价求和来更新答案.
容易发现这样是\(n^2\)的
然后我们回头看题目,发现有奇怪的条件:深度 <= 100
这启发了我们从深度的角度去考虑.
我们考虑枚举这条边的过程,发现其实我们根本不用枚举所有的边
我们考虑在每一个深度上只枚举一条边
换句话说:我们要选择一条从根开始的链,枚举这条链上的每一条边
我们可以从根考虑来选择每一步走哪一棵子树,从而挑选出一条从根开始的链.
这是我们发现:每一次都走子树权值和最大的哪一棵子树,一定是最优决策.
所以我们可以把复杂度降到\(O(nh)\)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(ll &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
typedef long long ll;
const ll maxn = 50005;
const ll inf = 1LL<<60;
struct Edge{
ll v,next;
}G[maxn<<1];
ll n, head[maxn], cnt=1,fa[maxn], dep[maxn], mx[maxn], cmx[maxn];
ll sum[maxn],val[maxn],ans=inf,cut;
inline void add(ll u, ll v) {
G[++cnt] = (Edge){v, head[u]};
head[u] = cnt;
}
inline void dfs(ll x) {
for(ll i = head[x];i; i=G[i].next){
if(G[i].v == fa[x]) continue;
dep[G[i].v] = dep[x] + 1;
fa[G[i].v] = x;
dfs(G[i].v);
sum[x] += sum[G[i].v];
val[x] += val[G[i].v] + sum[G[i].v];
if(mx[x] == 0 || sum[G[i].v] > sum[mx[x]]){
cmx[x] = mx[x];
mx[x] = G[i].v;
}else if(cmx[x] == 0 || sum[G[i].v] > sum[cmx[x]]){
cmx[x] = G[i].v;
}
}
}
inline void find(ll &ret,ll root,ll x,ll k){
ret = min(ret,k);
ll v = mx[x];
if(v == cut || sum[cmx[x]] > sum[mx[x]]) v = cmx[x];
if(v == 0) return;
find(ret,root,v, k + sum[root] - 2*sum[v]);
}
inline void dfss(ll x){
for(ll i = head[x];i;i=G[i].next){
if(G[i].v == fa[x]) continue;
cut = G[i].v;
ll gx = inf,gy = inf;
for(ll j = x; j; j = fa[j]) sum[j] -= sum[cut];
find(gx, 1, 1, val[1] - val[cut] - dep[cut] * sum[cut]);
find(gy, cut, cut, val[cut]);
ans = min(ans, gx + gy);
for(ll j = x; j; j=fa[j]) sum[j] += sum[cut];
dfss(G[i].v);
}
}
int main() {
read(n);
for(ll i=1,u,v;i<n;++i){
read(u);read(v);
add(u, v); add(v, u);
}
for(ll i=1;i<=n;++i) read(sum[i]);
dfs(1);dfss(1);
printf("%lld\n",ans);
getchar();getchar();
return 0;
}
bzoj 3302&2447&2103 树的双中心 树形DP的更多相关文章
- 51nod"省选"模测 A 树的双直径(树形dp)
题意 题目链接 Sol 比赛结束后才调出来..不多说啥了,就是因为自己菜. 裸的up-down dp,维护一下一个点上下的直径就行,一开始还想了个假的思路写了半天.. 转移都在代码注释里 毒瘤题目卡空 ...
- bzoj 4871: [Shoi2017]摧毁“树状图”【树形dp】
做不来--参考https://www.cnblogs.com/ezyzy/p/6784872.html #include<iostream> #include<cstdio> ...
- BZOJ3302: [Shoi2005]树的双中心
BZOJ3302: [Shoi2005]树的双中心 https://lydsy.com/JudgeOnline/problem.php?id=3302 分析: 朴素算法 : 枚举边,然后在两个连通块内 ...
- 【BZOJ3302】[Shoi2005]树的双中心 DFS
[BZOJ3302][Shoi2005]树的双中心 Description Input 第一行为N,1<N<=50000,表示树的节点数目,树的节点从1到N编号.接下来N-1行,每行两个整 ...
- 题解-SHOI2005 树的双中心
SHOI2005 树的双中心 给树 \(T=(V,E)(|V|=n)\),树高为 \(h\),\(w_u(u\in V)\).求 \(x\in V,y\in V:\left(\sum_{u\in V} ...
- 【BZOJ】3302: [Shoi2005]树的双中心 && 2103: Fire 消防站 && 2447: 消防站
[题意]给定带点权树,要求选择两个点x,y,满足所有点到这两个点中较近者的距离*点权的和最小.n<=50000,h<=100. [算法]树的重心 [题解]代码参考自:cgh_Andy 观察 ...
- BZOJ.2159.Crash的文明世界(斯特林数 树形DP)
BZOJ 洛谷 挺套路但并不难的一道题 \(Description\) 给定一棵\(n\)个点的树和\(K\),边权为\(1\).对于每个点\(x\),求\(S(x)=\sum_{i=1}^ndis( ...
- hdu 4612 Warm up 双连通+树形dp思想
Warm up Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) Total S ...
- HDU 2242 考研路茫茫—空调教室 (边双连通+树形DP)
<题目链接> 题目大意: 给定一个连通图,每个点有点权,现在需要删除一条边,使得整张图分成两个连通块,问你删除这条边后,两联通块点权值和差值最小是多少. 解题分析: 删除一条边,使原连通图 ...
随机推荐
- iOS-Core-Animation-Advanced-Techniques(二)
本文转载至 http://www.cocoachina.com/ios/20150104/10816.html 视觉效果和变换 (四)视觉效果 嗯,园和椭圆还不错,但如果是带圆角的矩形呢? 我们现在能 ...
- 网络编程------socketserver模块以及socket模块的更多用法.
socketserver模块 内置模块 (其实现原理为并发) socketserver这个模块主要是为了解决: TCP协议中,服务器不能同时连接多个客户端的问题 是处于socket抽象层和应用层之间的 ...
- .net EF监控 MiniProfiler
1.从NuGet上下载所需要的包:MiniProfiler.mvc,MiniProfiler,MiniProfiler.ef 2.Global.asax 加入 protected void Appli ...
- POJ 286 Y2K Accounting Bug【简单暴力】
链接: http://poj.org/problem?id=2586 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=26733#probl ...
- 智能家居DIY-空气质量检测篇-获取空气污染指数
前言 话说楼主终于升级当爸了,宝宝现在5个月了,宝宝出生的时候是冬天,正是魔都空气污染严重的时候,当时就想搞个自动开启空气净化器,由于种种原因一直没有时间搞,最近终于闲下来了这个事情终于提上议程了,现 ...
- linux c编程:线程创建
前面章节中介绍了进程.从这一章开始介绍线程.进程和线程的差别是什么呢: 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实 ...
- python3里面的图片处理库 pillow
在python2下用pil,而在python3下可以安装pillow 功能,在图片上加上几个字 #coding: utf-8 myPath = "./" fontPath = &q ...
- mysql设计表时出错
source下面那个字段没有设置类型,类型为空
- 图片加载ImageLoader
https://github.com/nostra13/Android-Universal-Image-Loader public class AtguiguApplication extends A ...
- 更改node版本
npm install -g n n stable 或 n v4.5.0