Tesseract5.0训练字库,提高OCR特殊场景识别率(一)
0、目标
很多特殊场景,原生的字库识别率不高,这时候就需要根据需求自己训练字库生成traineddata文件。
一、前期准备工作
1.安装jdk 用于运行jTessBoxEditor
2.安装jTessBoxEditor 用于调整图片上文字的内容和位置
3. 安装tesseract5.0
jdk下载地址:https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
jTessBoxEditor下载地址:https://sourceforge.net/projects/vietocr/files/jTessBoxEditor/
安装包解压后双击里面的“jTessBoxEditor.jar”,或者双击该目录下的“train.bat”脚本文件,就可以打开该工具了。
二、样本图片准备:(进行训练的样本图片数量越多越好)
三、使用JTBE生成训练样本的合并tif图片
1.打开jTessBoxEditor,选择Tools->Merge TIFF,进入训练样本所在文件夹,选中要参与训练的样本图片,可以同时选择多张图片:
2.点击打开后,会提示你保存tif的地址,保存在当前路径,文件命名格式为hyfontlab.normal.exp0.tif,格式选择tiff
注意:
tif文件命名格式[lang].[fontname].exp[num].tif
lang是语言,fontname是字体,num为自定义数字。
比如我们要训练自定义字库 hyfontlab,字体名normal,那么我们把图片文件命名hyfontlab.normal.exp0.tif
四、使用tesseract生成box文件
在上一步骤生成的 hyfontlab.normal.exp0.tif 文件所在目录下打开Terminal窗口,执行下面命令,执行完之后会生成hyfontlab.normal.exp0.box文件。box文件是通过原生的tesseract-ocr识别出来的结果和对应坐标。如果我们要训练中文字库的话,记得加 -l chi_sim
tesseract hyfontlab.normal.exp0.tif hyfontlab.normal.exp0 -l chi_sim batch.nochop makebox
五、使用jTBE纠正box文件的错误
1.box文件记录了每个字符在图片上的位置和识别出的内容,训练前需要使用jTessBoxEditor调整字符的位置和内容。
2.打开jTessBoxEditor点击Box Editor ->Open,打开步骤三中生成的“hyfontlab.normal.exp0.tif”,会自动关联到“hyfontlab.normal.exp0.box”文件,这两文件要求在同一目录下。调整完点击“save”保存修改。
注意:
如果中文无法识别,需要在settings里面设置字体为宋体,style为Regular,size可以调到24.
六、生成font_properties文件(此文件没有后缀名)
执行命令: echo normal 0 0 0 0 0 > font_properties
<fontname> <italic> <bold> <fixed> <serif> <fraktur>
其中fontname为字体名称,必须与[lang].[fontname].exp[num].box中的名称保持一致。<italic> 、<bold> 、<fixed> 、<serif>、 <fraktur>的取值为1或0,表示字体是否具有这些属性。
七、使用tesseract生成tr训练文件
1. 执行命令: tesseract hyfontlab.normal.exp0.tif hyfontlab.normal.exp0 nobatch box.train
2. 执行完之后,会在当前目录生成hyfontlab.normal.exp0.tr文件。
八、生成字符集文件
1.执行命令: unicharset_extractor fst.word.exp0.box
2. 执行下面命令:执行完之后会在当前目录生成一个名为“unicharset”的文件。
九、生成shape文件
1.执行命令: shapeclustering -F font_properties -U unicharset -O hyfontlab.unicharset hyfontlab.normal.exp0.tr
2.执行完之后,会生成 shapetable 和 hyfontlab.unicharset 两个文件
十、生成聚字符特征文件
1.执行命令: mftraining -F font_properties -U unicharset -O hyfontlab.unicharset hyfontlab.normal.exp0.tr
2.会生成 inttemp、pffmtable、shapetable和hyfontlab.unicharset四个文件。
十一、生成字符正常化特征文件
1.执行命令: cntraining hyfontlab.normal.exp0.tr
2.会生成 normproto 文件。
十二、文件重命名
1.重新命名inttemp、pffmtable、shapetable和normproto这四个文件的名字为[lang].xxx。
2.这里修改为 hyfontlab.inttemp、hyfontlab.pffmtable、hyfontlab.shapetable、hyfontlab.normproto
3.rename normproto zwp.normproto
十三、合并训练文件
1.执行下面命令,会生成hyfontlab.traineddata文件
2.执行命令: combine_tessdata hyfontlab.
3.Log输出中的Offset 1、3、4、5、13这些项不是-1,表示新的语言包生成成功。
4.将生成的“hyfontlab.traineddata”语言包文件复制到Tesseract-OCR 安装目录下的tessdata文件夹中,就可以使用训练生成的语言包进行图像文字识别了。
参考:
Tesseract5.0训练字库,提高OCR特殊场景识别率(一)的更多相关文章
- Tesseract5.0训练字库,提高OCR特殊场景识别率,合并字库(二)
一.准备工作 需要的文件 tif文件和box文件. 如果你打标打好了,但是是分批次打标的,那么可以合并字库,我们最初只需要 tif 和 box 文件,如下: 二.生成对应的 .tr 训练文件 根据不同 ...
- tesseract-ocr 提高验证码识别率手段之---识别码库训练方法
本文是对tesseract-ocr 使用的进一步技术升级说明,使用默认的识别库识别率比较低怎么办? 不用着急,tesseract-ocr本身的工具中提供了使用你提供的素材进行人工修正以提高识别率的方法 ...
- Tesseract-OCR-v5.0中文识别,训练自定义字库,提高图片的识别效果
1,下载安装Tesseract-OCR 安装,链接地址https://digi.bib.uni-mannheim.de/tesseract/ 2,安装成功 tesseract -v 注意:安装后, ...
- Tesseract-OCR4.0识别中文与训练字库实例
关于中文的识别,效果比较好而且开源的应该就是Tesseract-OCR了,所以自己亲身试用一下,分享到博客让有同样兴趣的人少走弯路. 文中所用到的身份证图片资源是百度找的,如有侵权可联系我删除. 一. ...
- 深入学习Tesseract-ocr识别中文并训练字库的方法
上篇文章简单的学习了tesseract-ocr识别图片中的英文(链接地址如下:https://www.cnblogs.com/wj-1314/p/9428909.html),看起来效果还不错,所以这篇 ...
- ABBYY FineReader利用模式提高OCR质量
提高OCR质量,除了可以使用ABBYY FineReader 12OCR文字识别软件解决纸质文档的复杂结构未出现在电子文档中,或者未正确检测到区域的问题(详见如何提高ABBYY FineReader ...
- 利用jTessBoxEditor工具进行Tesseract3.02.02样本训练,提高验证码识别率
1.背景 前文已经简要介绍tesseract ocr引擎的安装及基本使用,其中提到使用-l eng参数来限定语言库,可以提高识别准确率及识别效率. 本文将针对某个网站的验证码进行样本训练,形成自己的语 ...
- 用jTessBoxEditorFX训练字库
软件下载:https://sourceforge.net/projects/vietocr/files/jTessBoxEditor/ 官方字库下载:https://github.com/tesser ...
- Tesseract-OCR识别中文与训练字库
转自:https://www.cnblogs.com/lcawen/articles/7040005.html 关于中文的识别,效果比较好而且开源的应该就是Tesseract-OCR了,所以自己亲身试 ...
随机推荐
- PAT Advanced 1031 Hello World for U (20 分)
Given any string of N (≥) characters, you are asked to form the characters into the shape of U. For ...
- Vscode窗口被覆盖
用Vscode用的好好的,突然就发现窗口被覆盖了 解决办法如下:1.ctrl+shift+p 快捷键打开如下界面, 2.接着在搜索框中输入settings,点击首先项:打开设置(json) 3.再se ...
- bzoj4819 [Sdoi2017]新生舞会 分数规划+最大费用最大流
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4819 题解 首先上面说, \[ C = \frac{\sum\limits_{i=1}^n a ...
- 「版本升级」界面控件Kendo UI正式发布R2 2019|附下载
通过70多个可自定义的UI组件,Kendo UI可以创建数据丰富的桌面.平板和移动Web应用程序.通过响应式的布局.强大的数据绑定.跨浏览器兼容性和即时使用的主题,Kendo UI将开发时间加快了50 ...
- MySQL--全文索引作用、原理及使用注意
作用 MySQL索引可以分为:主键索引.普通索引.唯一索引.全文索引.其中,全文索引应该是是比较特殊的,它只有少数的几个存储引擎支持,且只有类型为char.vchar.text的列能建立全文索引.以前 ...
- POJ-2516-Minimum Cost(网络流, 最小费用最大流)
链接: https://vjudge.net/problem/POJ-2516 题意: Dearboy, a goods victualer, now comes to a big problem, ...
- SpringCloud学习系列-构建部门微服务提供者Module
1.新建microservicecloud-provider-dept-8001 2.POM <project xmlns="http://maven.apache.org/POM/4 ...
- watch和computed
watch和computed都是以Vue的依赖追踪机制为基础的,它们都试图处理这样一件事情:当某一个数据(称它为依赖数据)发生变化的时候,所有依赖这个数据的“相关”数据“自动”发生变化,也就是自动调用 ...
- 数据结构--排序--直接插入(python)
... def insertSort(nums): length = len(nums) for i in range(1,length): x = nums[i] for j in range(i, ...
- Linux内核设计与实现 总结笔记(第十五章)进程地址空间
一.地址空间 进程地址空间由进程可寻址的虚拟内存组成,内核允许进程使用这种虚拟内存中的地址. 每个进程都有一个32位或64位的平坦地址空间,空间的具体大小取决于体系结构.“平坦”指的是地址空间范围是一 ...