洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

标签:题解

阅读体验:https://zybuluo.com/Junlier/note/1299251

链接题目地址:洛谷P2507 [SCOI2008]配对

感觉是道很好的推断题

贪心

想到贪心的结论就很容易,没想到就很难做出来了

结论:对\(A,B\)数组分别排序之后,在\(A\)中选第\(i\)个数,与之配对的数一定在\(B[i-1]\)~\(B[i+1]\)内

其实证明是很好证的,在与你是否往这方面想了。。。

因为题目有一个很好的性质:\(A,B\)数列中数字各不相同

所以如果没有配对不相等的限制的话,我们肯定是排序直接减得答案是吧

那么有限制之后,就有机会让\(A[i]\)和\(B[i-1]\)或\(B[i+1]\)配对了吧,跳远了显然是不会更优的

动态规划

那么就可以直接\(dp\)了:\(dp[i]\)表示到第\(i\)号全部配对的最小答案

因为一个数可能与三个数配对,那么我们可以大力讨论\(dp\)了

对于限制,我们手写一个\(ABS\),如果差为0,返回\(Inf\)就\(ok\)

dp[i]=MIN(dp[i],dp[i-1]+ABS(A[i]-B[i]));
dp[i]=MIN(dp[i],dp[i-2]+ABS(A[i]-B[i-1])+ABS(A[i-1]-B[i]));
dp[i]=MIN(dp[i],dp[i-3]+ABS(A[i]-B[i-1])+ABS(A[i-1]-B[i-2])+ABS(A[i-2]-B[i]));
dp[i]=MIN(dp[i],dp[i-3]+ABS(A[i]-B[i-2])+ABS(A[i-1]-B[i-1])+ABS(A[i-2]-B[i]));
dp[i]=MIN(dp[i],dp[i-3]+ABS(A[i]-B[i-2])+ABS(A[i-1]-B[i])+ABS(A[i-2]-B[i-1]));

从上到下依次是:自己看一下吧。。。(草稿纸上玩结论,自己\(yy\),我懒得写了)

那么全部代码

不合法情况就是\(n==1\)并且\(A[1]==B[1]\)时

因为\(A,B\)数列中数字各不相同,所以\(n>1\)时一定可以另外配得到对

#include<bits/stdc++.h>
#define il inline
#define rg register
#define ldb double
#define lst long long
#define rgt register int
#define N 100050
using namespace std;
const lst Inf=1e15;
il int MAX(rgt x,rgt y){return x>y?x:y;}
il lst MIN(rg lst x,rg lst y){return x<y?x:y;}
il int read()
{
int s=0,m=0;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')m=1;ch=getchar();}
while( isdigit(ch))s=(s<<3)+(s<<1)+(ch^48),ch=getchar();
return m?-s:s;
} int n;
lst A[N],B[N];lst dp[N];
il lst ABS(rg lst x){return x?(x>0?x:-x):(Inf);} int main()
{
n=read();
for(rgt i=1;i<=n;++i)A[i]=read(),B[i]=read(),dp[i]=Inf;
if(n==1&&A[1]==B[1]){puts("-1");return 0;}
sort(&A[1],&A[n+1]),sort(&B[1],&B[n+1]);
dp[1]=ABS(A[1]-B[1]);
dp[2]=MIN(dp[1]+ABS(A[2]-B[2]),ABS(A[1]-B[2])+ABS(A[2]-B[1]));
for(rgt i=3;i<=n;++i)
{
dp[i]=MIN(dp[i],dp[i-1]+ABS(A[i]-B[i]));
dp[i]=MIN(dp[i],dp[i-2]+ABS(A[i]-B[i-1])+ABS(A[i-1]-B[i]));
dp[i]=MIN(dp[i],dp[i-3]+ABS(A[i]-B[i-1])+ABS(A[i-1]-B[i-2])+ABS(A[i-2]-B[i]));
dp[i]=MIN(dp[i],dp[i-3]+ABS(A[i]-B[i-2])+ABS(A[i-1]-B[i-1])+ABS(A[i-2]-B[i]));
dp[i]=MIN(dp[i],dp[i-3]+ABS(A[i]-B[i-2])+ABS(A[i-1]-B[i])+ABS(A[i-2]-B[i-1]));
}return printf("%lld\n",dp[n]),0;
}

洛谷P2507 [SCOI2008]配对 题解(dp+贪心)的更多相关文章

  1. 洛谷 P2507 [SCOI2008]配对

    P2507 [SCOI2008]配对 题目背景 四川NOI2008省选 题目描述 你有 n 个整数Ai和n 个整数Bi.你需要把它们配对,即每个Ai恰好对应一个Bp[i].要求所有配对的整数差的绝对值 ...

  2. 洛谷P2507 [SCOI2008]配对 [DP,贪心]

    题目传送门 配对 题目描述 你有 n 个整数Ai和n 个整数Bi.你需要把它们配对,即每个Ai恰好对应一个Bp[i].要求所有配对的整数差的绝对值之和尽量小,但不允许两个相同的数配对.例如A={5,6 ...

  3. 洛谷P2507 [SCOI2008]配对

    题目背景 四川NOI2008省选 题目描述 你有 n 个整数Ai和n 个整数Bi.你需要把它们配对,即每个Ai恰好对应一个Bp[i].要求所有配对的整数差的绝对值之和尽量小,但不允许两个相同的数配对. ...

  4. 【题解】洛谷P2577 [ZJOI2005] 午餐(DP+贪心)

    次元传送门:洛谷P2577 思路 首先贪心是必须的 我们能感性地理解出吃饭慢的必须先吃饭(结合一下生活) 因此我们可以先按吃饭时间从大到小排序 然后就能自然地想到用f[i][j][k]表示前i个人在第 ...

  5. 洛谷 P2577 [ ZJOI 2005 ] 午餐 —— DP + 贪心

    题目:https://www.luogu.org/problemnew/show/P2577 首先,想一想可以发现贪心策略是把吃饭时间长的人放在前面: 设 f[i][j] 表示考虑到第 i 个人,目前 ...

  6. 洛谷P5019 铺设道路 题解 模拟/贪心基础题

    题目链接:https://www.luogu.org/problemnew/show/P5019 这道题目是一道模拟题,但是它有一点贪心的思想. 我们假设当前最大的深度是 \(d\) ,那么我们需要把 ...

  7. 洛谷P2756飞行员配对方案问题 P2055假期的宿舍【二分图匹配】题解+代码

    洛谷 P2756飞行员配对方案问题 P2055假期的宿舍[二分图匹配] 飞行员配对方案问题 题目背景 第二次世界大战时期.. 题目描述 英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架 ...

  8. 【洛谷】P1052 过河【DP+路径压缩】

    P1052 过河 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙 ...

  9. 洛谷 P2503 [HAOI2006]均分数据 随机化贪心

    洛谷P2503 [HAOI2006]均分数据(随机化贪心) 现在来看这个题就是水题,但模拟赛时想了1个小时贪心,推了一堆结论,最后发现贪心做 不了, 又想了半个小时dp 发现dp好像也做不了,在随机化 ...

随机推荐

  1. python-套接字编程之udp

    使用udp协议 服务端: #!/usr/bin/python3 # coding:utf-8 # Auther:AlphaPanda # Description:UDP服务端 # Version:1 ...

  2. 14.django返回展示一张图片

    urlpatterns = [ path('admin/', admin.site.urls), # 使用django返回一张土图片的时候需要间接的访问一个中间接口,是html页面的中的img的src ...

  3. 安装SQL2012出现[HKLM\Software\Microsoft\Fusion!EnableLog] (DWORD)设置为 1

    本人安装SQL2012出现这个错误,找了三天三夜,终于把问题找出来,共享给有需要的人们,不用重新换系统 错误如下: 1,此问题是系统.net Framework版本冲突,首先下载.net Framew ...

  4. web上传文件夹

    文件夹数据库处理逻辑 publicclass DbFolder { JSONObject root; public DbFolder() { this.root = new JSONObject(); ...

  5. 【BZOJ3931】[CQOI2015]网络吞吐量

    Description 路由是指通过计算机网络把信息从源地址传输到目的地址的活动,也是计算机网络设计中的重点和难点.网络中实现路由转发的硬件设备称为路由器.为了使数据包最快的到达目的地,路由器需要选择 ...

  6. java中的浅拷贝和深拷贝

    复制 将一个对象的引用复制给另一个对象,一共有三种方式.第一种方式是直接赋值,第二种方式是浅复制,第三种方式是深复制. 1.直接赋值 在Java中,A a1 = a2,这实际上复制的是引用,也就是说 ...

  7. shell变量与运算

    shell变量与运算 @(0003 shell编程) 变量存在于内存中.假设变量str,设置或修改变量属性时,不带$号,只有引用变量的值时才使用$号.也就是说在内存中,标记变量的变量名称是str,而不 ...

  8. 使用C#检测电脑上是否安装某软件

    private void button2_Click(object sender, EventArgs e) { try { string app = "chrome.exe"; ...

  9. shell脚本之结构化命令if...then...fi

    if的用法日常主要用于数值或者字符串的比较来实现结构化的,模拟人脑,就是如果遇到什么事情,我们应该做什么 语法格式分为 1. if command;then command;fi    (如果if满足 ...

  10. ffmpeg摄像头推流

    ffmpeg -f dshow -i video="Integrated Camera" -vcodec libx264 -preset:v ultrafast -tune:v z ...