洛谷3317 SDOI2014重建(高斯消元+期望)
qwq
一开始想了个错的做法。
哎
直接开始说比较正确的做法吧。
首先我们考虑题目的\(ans\)该怎么去求
我们令\(x\)表示原图中的某一条边
\]
qwq而根据矩阵树定理,我们可以求出来所有生成树的边权乘积的和,也就是前一部分。
现在我们考虑应该怎么优化第二部分。
qwq
我们经过推理能发现,我们可以用总的除去在生成树里面的求出来不在生成树里面的。
也就是说
\]
我们带回原柿,然后把\(\prod (1-p_i)\)提出来
\]
那么现在,对于后面那一项,我们只需要把所有的边都设成权值是\(\prod_{x \in tree} \frac{p_x}{1-p_x}\)
然后每个\(d[i]\)表示与他连接的所有边权的和。
直接跑矩阵树定理就能求出来\(sum\)啦,然后直接用一开始求的\(\prod p_x\),一减就OK了
但是这里有一个需要注意的地方就是当\(p_x\)等于\(1\)的时候,我们应该将他的权值设成\(1-eps\)
因为当\(p\)等于1的时候,\(\frac{1}{1-p} -> inf\)
然后有因为\(\frac{1}{eps}->inf\)
所以\(p=1-eps\)
然后弄完权值直接跑矩阵树定理就好
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
#include<ctime>
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 110;
const double eps = 1e-6;
double a[maxn][maxn];
double d[maxn];
int n;
double ans=1;
void gauss()
{
int k=1;
for (int i=1;i<=n;i++)
{
int now = k;
while(now<=n && fabs(a[now][i])<=eps) now++;
if (now==n+1) continue;
for (int j=1;j<=n+1;j++) swap(a[now][j],a[k][j]);
for (int j=1;j<=n;j++)
{
if (j!=k)
{
double t = a[j][i]/a[k][i];
for (int p=1;p<=n+1;p++) a[j][p]-=t*a[k][p];
}
}
++k;
}
for (int i=1;i<=n;i++)
ans=ans*a[i][i];
}
double ymh=1;
int main()
{
n=read();
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
{
double x;
scanf("%lf",&x);
if (x==1) x = 1-eps;
if (i<j) ymh=ymh*(1-x);
x=x/(1-x);
a[i][j]=-x;
d[i]+=x;
//d[j]+=x;
}
for (int i=1;i<=n;i++) a[i][i]=d[i];
gauss();
printf("%.5lf",ans*ymh);
return 0;
}
洛谷3317 SDOI2014重建(高斯消元+期望)的更多相关文章
- 洛谷P2455 [SDOI2006]线性方程组(高斯消元)
题目描述 已知n元线性一次方程组. 其中:n<=50, 系数是[b][color=red]整数<=100(有负数),bi的值都是整数且<300(有负数)(特别感谢U14968 mmq ...
- 【洛谷P3389】(模板)高斯消元
对于高斯消元法求解线性方程组, 我的理解就类似于我们在做数学题时的加减消元法, 只是把它写成一个通用的程序运算过程 对于一个线性方程组,我们从左往右每次将一列对应的行以下的元通过加减消元消去, 每个元 ...
- HDU2262;Where is the canteen(高斯消元+期望)
传送门 题意 给出一张图,LL从一个点等概率走到上下左右位置,询问LL从宿舍走到餐厅的步数期望 分析 该题是一道高斯消元+期望的题目 难点在于构造矩阵,我们发现以下结论 设某点走到餐厅的期望为Ek 1 ...
- 洛谷P3232 [HNOI2013]游走(高斯消元+期望)
传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...
- Codeforces 446D - DZY Loves Games(高斯消元+期望 DP+矩阵快速幂)
Codeforces 题目传送门 & 洛谷题目传送门 神仙题,%%% 首先考虑所有格子都是陷阱格的情况,那显然就是一个矩阵快速幂,具体来说,设 \(f_{i,j}\) 表示走了 \(i\) 步 ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- BZOJ_3270_博物馆_(高斯消元+期望动态规划+矩阵)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=3270 \(n\)个房间,刚开始两个人分别在\(a,b\),每分钟在第\(i\)个房间有\(p[ ...
- BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算
BZOJ 2337 XOR和路径 题解 这道题和游走那道题很像,但又不是完全相同. 因为异或,所以我们考虑拆位,分别考虑每一位: 设x[u]是从点u出发.到达点n时这一位异或和是1的概率. 对于所有这 ...
- BZOJ 2707: [SDOI2012]走迷宫 拓扑+高斯消元+期望概率dp+Tarjan
先Tarjan缩点 强连通分量里用高斯消元外面直接转移 注意删掉终点出边和拓扑 #include<cstdio> #include<cstring> #include<a ...
随机推荐
- 根据经纬度查询最近距离,mysql查询经纬度附近范围
public class Test{ private static List<LocalAddress> ilist = new ArrayList<LocalAddress> ...
- linux-解决/usr/bin/which: no ssh-copy-id in 和ssh: Could not resolve hostname问题
使用yum install openssh-clients 安装命令 有的系统没有此命令 有的系统缺省 就包含这一条命令! 但是我的测试机没有发现此命令 只能这样安装! 这时有报错了 1 2 [ro ...
- vue 前端反向代理后台,解决跨域问题
// 和 src 同层的 config 文件夹下的 index.js dev 里面的 // Paths assetsSubDirectory: 'static', assetsPubl ...
- 揭秘盒马鲜生 Android 短视频秒播优化方案
短视频作为内容重要的承载方式,是吸引用户的重点,短视频的内容与体验直接关系到用户是否愿意长时停留.因此,体验的优化就显得尤为重要.上一篇我们分享了 iOS 短视频秒播优化,这篇我们来聊聊 Androi ...
- Python - 面向对象编程 - __del__() 析构方法
del 语句 Python 提供了 del 语句用于删除不再使用的变量 语法 del 表达式 删除变量的栗子 var = "hello" del var print(var) # ...
- Selenium系列(十七) - Web UI 自动化基础实战(4)
如果你还想从头学起Selenium,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1680176.html 其次,如果你不懂前端基础知识, ...
- Codeforces 1365D Solve The Maze
### 题目大意: 在一个 $n * m$ 的矩阵中,有空地.坏人.好人和墙.你可以将空地变成墙来堵住坏人.$(n, m)$为出口,是否存在一个方案使得矩阵中所有好人能够走到出口,而所有坏人不能通过出 ...
- RIAD配置
一.RIAD 磁盘阵列介绍 二.阵列卡介绍 三.案例举例 一.RAID磁盘阵列介绍 是Redundant Array of Independent Disks的缩写,中文简称为独立冗余磁盘阵列 把 ...
- [第十六篇]——Docker 安装 CentOS之Spring Cloud直播商城 b2b2c电子商务技术总结
Docker 安装 CentOS CentOS(Community Enterprise Operating System)是 Linux 发行版之一,它是来自于 Red Hat Enterprise ...
- 为什么在匿名内部类中引用外部对象要加final修饰符
当所在的方法的形参需要被内部类里面使用时,该形参必须为final. 为什么必须要为final呢? 首先我们知道在内部类编译成功后,它会产生一个class文件,该class文件与外部类并不是同一clas ...