bzoj 1495
这是一道...卡了我一个月的树形dp...
我真是太弱了...
其实仔细想想,这题的核心思路并不是特别复杂,但是的确存在不小的难度
作为一个看过全网基本所有题解+标程才弄明白这题到底怎么回事的蒟蒻,我努力把所有东西揉到一起让各位看官一眼看懂...
首先我们简化一下题意:给定一棵满二叉树,每个叶节点有一个状态(0,1),任选两个叶节点,如果这两个叶节点状态相同但他们的LCA所管辖的子树中的与他们状态相同的叶节点个数较少(少于1/2),则会产生2f的代价,如果状态不同,则产生f的代价,如果状态相同且LCA管辖子树中与他们状态相同叶节点个数较多,则不产生代价,现在每个节点可以变更状态,但变更状态也有自己的代价,求最小总代价
那么..怎么搞?
首先,有一个很重要的思想:点对之间的问题是难以快速解决的!
很简单,因为如果我们按点对统计贡献,那么在枚举到每个叶节点都需要考虑其他所有叶节点,这样是不利于我们处理问题的
所以我们第一步要考虑的是把点对的贡献压到一个点上
很幸运,题目给出了这样的方式:
注意题目中“产生2f的代价”“产生f的代价”这两句话!
那么如果我们同样给所有非叶节点一个状态(0,1),代表这个节点管辖的子树中叶节点状态为0的多还是状态为1的多,那么我们显然可以看到:如果一个叶节点和这个根节点的状态相同,那么这个叶节点不会产生贡献,反之会产生一个f的贡献!
证明:分类讨论:
①:假设两个节点与根节点状态都相同,那么这两个节点都不产生贡献,满足题意
②:假设两个节点与根节点状态都不同,那么这两个节点都产生一个f的贡献,满足题意
③:如果有一个点与根节点状态相同,那么这两个节点只产生一个f的贡献,同样满足题意
因此我们这样处理点对是正确的
总结:在处理点对时,我们要把一个点对的贡献压到一个点上,同时给所有非叶节点一个状态,这样就能满足题意了
接下来就可以进行树形dp了
记状态dp[i][j]表示当前位于树上的第i个节点,其子树的叶节点中状态为0的点的个数为j时所需的最小代价
(这里对题意有一个小提示:当两种状态的叶节点数量相等时,认为状态为0的叶节点个数多)
如果这个节点不是叶节点,那么显然,这个节点会有两种可能的状态:
①:这个节点状态为1,认为对应的情况为子树中状态为0的节点偏多,那么可以转移的dp部分是叶节点个数/2-叶节点个数
②:这个节点状态为0,认为对应的情况为子树中状态为1的节点偏多,那么可以转移的dp部分是0-叶节点个数/2-1
那么我们分两类dfs处理,对每类情况分别合并即可
如果这个节点是叶节点,那么我们反过来枚举他上面一条链的情况,然后统计代价即可,一定注意dp的第二维代表状态为0的节点的数目!
在统计代价的时候,我们还涉及一个小问题,就是如果每次找到根节点时都枚举所有点计算代价,时间承受不了,所以我们对代价求前缀和,然后用类似倍增的方法计算总代价即可。
当然,我们不可能一直枚举上面一条链的情况,所以我们直接把这条链的状态状压,传进dfs里即可,这样也就不涉及网上大部分题解都涉及到的压缩空间的问题了。
提示:这是一棵满二叉树,所以可以用类似线段树的方式去遍历。
这样这道题就结束了
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#define rt1 rt<<1
#define rt2 (rt<<1)|1
using namespace std;
int dp[(<<)+][(<<)+];
int v[(<<)+][(<<)+];
int cv[(<<)+];
int ori[(<<)+];
int temp[(<<)+];
int lq[],rq[];
int n;
void dfs(int rt,int l,int r,int sit,int dep)
{
if(l==r)
{
dep--;
dp[rt][]=dp[rt][]=;
if(ori[l])
{
dp[rt][]=cv[l];
}else
{
dp[rt][]=cv[l];
}
for(int i=;i<=dep;i++)
{
int mid=(lq[i]+rq[i])>>;
if((sit&(<<(dep-i))))
{
if(l<=mid)
{
dp[rt][]+=v[l][rq[i]]-v[l][mid];
}else
{
dp[rt][]+=v[l][mid]-v[l][lq[i]-];
}
}else
{
if(l<=mid)
{
dp[rt][]+=v[l][rq[i]]-v[l][mid];
}else
{
dp[rt][]+=v[l][mid]-v[l][lq[i]-];
}
}
}
return;
}
int mid=(l+r)>>;
int len=r-l+;
lq[dep]=l;
rq[dep]=r;
dfs(rt1,l,mid,(sit<<),dep+);
dfs(rt2,mid+,r,(sit<<),dep+);
memset(temp,0x3f,sizeof(temp));
for(int i=;i<=len/-;i++)
{
for(int j=;j<=i;j++)
{
temp[i]=min(temp[i],dp[rt1][j]+dp[rt2][i-j]);
}
}
for(int i=;i<=len/-;i++)
{
dp[rt][i]=temp[i];
}
dfs(rt1,l,mid,(sit<<)|,dep+);
dfs(rt2,mid+,r,(sit<<)|,dep+);
memset(temp,0x3f,sizeof(temp));
for(int i=len/;i<=len;i++)
{
for(int j=;j<=i;j++)
{
temp[i]=min(temp[i],dp[rt1][j]+dp[rt2][i-j]);
}
}
for(int i=len/;i<=len;i++)
{
dp[rt][i]=temp[i];
}
}
int main()
{
scanf("%d",&n);
n=(<<n);
for(int i=;i<=n;i++)
{
scanf("%d",&ori[i]);
}
for(int i=;i<=n;i++)
{
scanf("%d",&cv[i]);
}
for(int i=;i<=n;i++)
{
for(int j=i+;j<=n;j++)
{
scanf("%d",&v[i][j]);
v[j][i]=v[i][j];
}
}
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
v[i][j]=v[i][j-]+v[i][j];
}
}
memset(dp,0x3f,sizeof(dp));
dfs(,,n,,);
int ans=;
for(int i=;i<=n;i++)
{
ans=min(ans,dp[][i]);
}
printf("%d\n",ans);
return ;
}
bzoj 1495的更多相关文章
- BZOJ 1495 [NOI2006]网络收费(暴力DP)
题意 给定一棵满二叉树,每个叶节点有一个状态0/10/10/1,对于每两个叶节点i,ji,ji,j,如果这两个叶节点状态相同但他们的LCALCALCA所管辖的子树中的与他们状态相同的叶节点个数较少(少 ...
- BZOJ 2127: happiness [最小割]
2127: happiness Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 1815 Solved: 878[Submit][Status][Di ...
- BZOJ 3144: [Hnoi2013]切糕
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1495 Solved: 819[Submit][Status] ...
- BZOJ 3275: Number
3275: Number Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 874 Solved: 371[Submit][Status][Discus ...
- BZOJ 2879: [Noi2012]美食节
2879: [Noi2012]美食节 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1834 Solved: 969[Submit][Status] ...
- bzoj 4610 Ceiling Functi
bzoj 4610 Ceiling Functi Description bzoj上的描述有问题 给出\(n\)个长度为\(k\)的数列,将每个数列构成一个二叉搜索树,问有多少颗形态不同的树. Inp ...
- BZOJ 题目整理
bzoj 500题纪念 总结一发题目吧,挑几道题整理一下,(方便拖板子) 1039:每条线段与前一条线段之间的长度的比例和夹角不会因平移.旋转.放缩而改变,所以将每条轨迹改为比例和夹角的序列,复制一份 ...
- 【sdoi2013】森林 BZOJ 3123
Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数.第三行包含N个非负整数 ...
- 【清华集训】楼房重建 BZOJ 2957
Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...
随机推荐
- 【Linux】LD_PRELOAD用法
转载https://blog.csdn.net/iEearth/article/details/49952047 还有一篇博客也可以看看https://blog.csdn.net/xp5xp6/art ...
- 使用Windows命令行启动关闭服务(net,sc用法)
下面两个命令最好以管理员方式启动cmd窗口,否则出现权限问题. 1.net用于打开没有被禁用的服务, NET命令是功能强大的以命令行方式执行的工具. 它包含了管理网络环境.服务.用户.登陆大部分重要的 ...
- Light oj 1281 - New Traffic System 多状态最短路
题目大意:有向图,新计划的地铁,有k个计划新路,利用现有的铁路.k条新路和限定只能用d条新路,找出从0到n-1的最短路径 题目思路:用dist[u][use],储存使用use条新路,到达节点u的最短路 ...
- Navicat for Mysql连接mysql数据库时出现 2003-Can't connect to MySql server on 'localhost'(10061)
一.环境:linux服务器下 二.问题:在windows7下使用Navicat for Mysql连接mysql数据库时出现 2003-Can't connect to MySql server on ...
- openstack Q版部署-----虚拟机密码修改问题
一.修改镜像密码 1.打开一个要修改的镜像 随便找一台centos服务器 [root@linux-node1 ~]#wget http://cloud.centos.org/centos/7/imag ...
- JavaWeb - 目录
参考:https://www.cnblogs.com/xdp-gacl/tag/JavaWeb%E5%AD%A6%E4%B9%A0%E6%80%BB%E7%BB%93/default.html?pag ...
- SpringSecurityOAuth认证配置及Token的存储
⒈pom依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...
- go byte 和 string 类型之间转换
string 不能直接和byte数组转换 string可以和byte的切片转换 1,string 转为[]byte var str string = "test" var data ...
- win7系统查看硬盘序列号步骤
1.在开始那里输入cmd,打开命令窗口: 2.输入diskpart,按enter键,进入底盘查看选项: 3.输入list disk,按回车键: list disk:查看电脑上有几块硬盘: 输入sele ...
- dubbo源码分析7——dubbo的配置解析_与spring的整合
dubbo的配置其实就是建立在spring的命名空间的配置机制之上的.在dubbo的jar包的META-INF目录下会有spring.handlers这个文件,用来配置spring的命名空间和解析类的 ...