Basic theory

(i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks, )  regression, classification.
(ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning)
 
Others:
Reinforcement learning, recommender systems
 
SSE(和方差、误差平方和):The sum of squares due to error
 
MSE(均方差、方差):Mean squared error
 
RMSE(均方根、标准差):Root mean squared error
 
 
Linear regression
  • Gradient Descent algorithm:
 
     cost function:
  
  % correspoding code to compute gradient decent 
    h = X * theta;
    theta = theta - alpha/m * (X' * (h - y));
    
  • Normal Equation 标准方程/正规方程
 
Gradient Descent vs Normal Equation
time complexity for Gradient Decent is O(kn2) 
Locally weighted regression: 只考虑待预测点附件的training data
 
 
 
Logistic regression
 
    a classfication algorithm
 
 
Cost function:
 
 
 
 
 
  • Gradient Descent algorithm
          其中偏导数的推导如下:
       
 
Newton's method: much faster than Gradient Decent.
 
上图是求f(θ)=0时候的θ, 如果对f(θ)积分的最大值或者最小值
Newton’s method gives a way of getting to f(θ) = 0. What if we want to use it to maximize some function ℓ? The maxima of ℓ correspond to points where its first derivative ℓ ′ (θ) is zero. So, by letting f(θ) = ℓ ′ (θ), we can use the same algorithm to maximize ℓ, and we obtain update rule: 
θ := θ − ℓ ′(θ) / ℓ ′′(θ)
在python里,
 
 
Logistic Regression (Classification) decision boundary:
 

 

 
        
      
Neural Network
cost function:
 
           
          
back propagation algorithm:
 
 
  1. we can use Gradient checking to check if the backpropagation algorithm is working correctly.
  2. need randomly initialize theta
 
 
Diagnostic
Diagnostic 用来分析学习算法是不是正常工作,如果不正常工作,进一步找出原因
                       
怎么来评估learning algorithm 是否工作呢? 
 
可以评估hypothesis 函数, 具体可以把所以input数据分成一部分training set, 另一部分作为test set 来验证,Andrew 建议 70%/30% 这个比例来划分,然后看用training set 得到的hypothesis 在 test set 上是否工作
 
 
  • 一旦发现hypothesis 不工作,可以用model selection 来重新找hypothesis
 
  • 怎么确定 degree of polynomial (hypothesis方程的次数),
  1. 把input data 按照60/20/20% 分成3组 training set/ cross validation set/ test set
  2. 基于traing按照1-10 degree 先给出不同次数的hypothesis 函数,然后用cross validation set 实验不同次数的hypothesis方程, 得到最好结果的hypothesis
  3. 基于test set 可以给出 test report
 
  • 怎么确定 lamda (0, 0,01, 0,02, 0.04, 0.08, ..., 10)
 
 
 
  • Learning curves:
 
high bias:
 
high variance: (high gap)
 
If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.
If a learning algorithm is suffering from high variance, getting more training data is likely to help.
 
  • How to upgrade your model?
 
  1. Getting more training examples: Fixes high variance
  2. Trying smaller sets of features: Fixes high variance
  3. Adding features: Fixes high bias
  4. Adding polynomial features: Fixes high bias
  5. Decreasing λ: Fixes high bias
  6. Increasing λ: Fixes high variance.
 
 
 
 
Unsupervised Learning   
 
Generative learning algo
 
 
 

Q&A

What is overfitting problem?
        
  1. How to reduce overfitting problem?
  • reduce the number of features
  • regularization. Keep all the features, but reduce the magnitude of parameters θ j
 
  1. besises Gradient Decent, what other algorithms we can use ?
  • besides Gradient Decent,  there are some optimization algorithms like Conjugate gradient, BFGS, L-BFGS.
  • These 3 optimization algorithms don't need maually pick , and they are often faster than Gradient Decent, but more
 
Reference:
 
 
Terms:
'parametric' learning algo
  • which has fixed set of parameters Theta, like linear regression
'non-parameter' learning algo
  • in which no. of parameters grow with m.
  • one specific algo is Locally weighted regression (Loess, or LWR), 这个算法不需要我们自己选feature,原理是只拟合待预测点附近的点的曲线
 
Discriminative algo: 对y建模 p(y|x)
Generative algo: 对x建模p(x|y)
 
GDA - Gaussian Discriminant Analysis,x 连续,y 不连续 
Naive Bayes - 比如垃圾邮件分类器,x 是不连续的,y 也是不连续的

Coursera, Machine Learning, notes的更多相关文章

  1. Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables

    https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables ...

  2. 神经网络作业: NN LEARNING Coursera Machine Learning(Andrew Ng) WEEK 5

    在WEEK 5中,作业要求完成通过神经网络(NN)实现多分类的逻辑回归(MULTI-CLASS LOGISTIC REGRESSION)的监督学习(SUOERVISED LEARNING)来识别阿拉伯 ...

  3. 【Coursera - machine learning】 Linear regression with one variable-quiz

    Question 1 Consider the problem of predicting how well a student does in her second year of college/ ...

  4. Coursera, Machine Learning, Anomoly Detection & Recommender system

      Algorithm:     When to select Anonaly detection or Supervised learning? 总的来说guideline是如果positive e ...

  5. Coursera, Machine Learning, SVM

    Support Vector Machine (large margin classifiers ) 1. cost function and hypothesis 下面那个紫色线就是SVM 的cos ...

  6. Coursera, Machine Learning, Neural Networks: Representation - week4/5

    Neural Network Motivations 想要拟合一条曲线,在feature 很多的情况下,feature的组合也很多,在现实中不适用,比如在computer vision问题中featu ...

  7. Coursera machine learning 第二周 编程作业 Linear Regression

    必做: [*] warmUpExercise.m - Simple example function in Octave/MATLAB[*] plotData.m - Function to disp ...

  8. Coursera machine learning 第二周 quiz 答案 Octave/Matlab Tutorial

    https://www.coursera.org/learn/machine-learning/exam/dbM1J/octave-matlab-tutorial Octave Tutorial 5  ...

  9. Coursera Machine Learning 作业答案脚本 分享在github上

    Github地址:https://github.com/edward0130/Coursera-ML

随机推荐

  1. [agc016B][Colorful Hats]

    题目链接 思路 首先,如果没人说谎那么序列中肯定只有一大一小两种数,假设大的数为x,小的数为y.因为对于每个人只有两种情况,要么自己与除自己外的某个人拥有相同的颜色,此时总颜色数就是这个人所能看到的颜 ...

  2. MyQR库自动为网址生成二维码

    首先安装MyQR库: pip install MyQR #导包 from MyQR import myqr #生成二维码 words=你要为那个网址生成二维码 save_name=保存后的图片名 pi ...

  3. 关于react-native项目在MacBookPro环境下打包成IPA

    苹果开发者打包是需要接入公司的开发者账户里面的.看是企业账户还是什么,具体我不太清楚. 不过打包的方法倒是大同小异. 我们一起新建项目,先跑起来这个项目 npm install -g yarn rea ...

  4. Java 多线程篇

    先举个例子 计算机的核心是CPU,它承担了计算机所有计算任务,可以把它理解为像一个工厂,时刻在运行. 假定工厂有一个电力系统,工厂有很多车间,一次只能供给一个车间使用,也就是说一个车间开工的时候,其他 ...

  5. 第三十六篇-FloatingActionButton的使用

    效果图: 准备两张图片,一张作为桌面背景,一张作为那个悬浮的加号.放在mipmap下面. 首先,添加Imageview作为桌面背景,并设置扩充整个屏幕.接着,添加一个悬浮按钮,放在右下角,可以对悬浮按 ...

  6. 2018.12.14 浪在ACM 集训队第九次测试赛

    浪在ACM 集训队第九次测试赛 B Battleship E Masha and two friends B 传送门 题意: 战船上有占地n*n的房间cells[][],只由当cells[i][j]= ...

  7. noi.openjudge 1.13.44

    http://noi.openjudge.cn/ch0113/44/ 总时间限制:  1000ms 内存限制:  65536kB 描述 将 p 进制 n 转换为 q 进制.p 和 q 的取值范围为[2 ...

  8. HTML学习笔记Day16

    一.CSS 3D 1.什么是3d的场景呢? 2d场景,在屏幕上水平和垂直的交叉线x轴和y轴 3d场景,在垂直于屏幕的方法,相对于2d多出个z轴 Z轴:靠近屏幕的方向是正向,远离屏幕的方向是反向 2.C ...

  9. xp与win7双系统时删除win7启动菜单

    1.提取Win7安装光盘中,boot目录下的[bootsect.exe]到其它盘中,备用! 2 2.启动到WinXP或者WinPE或者Dos中,只要是能执行dos命令的地方就可以 3 3.cmd下进入 ...

  10. springcloud的turbine集成zookeeper

    1.turbine监控界面显示一直是loading的状态,如何解决 http://blog.didispace.com/spring-cloud-tips-4/ 2.通过追踪turbine的依赖可以看 ...