「AHOI / HNOI2017」影魔
「AHOI / HNOI2017」影魔
解决这类比较复杂的区间贡献问题关键在于找到计算的对象。
比如这道题,我们计算的对象就是区间中间的最大值。
对于点\(i\),我们找到左边第一个比他大的位置\(L\),以及右边第一个比他大的位置\(R\)。当\(L,R\)同时被询问的区间包含是,\(i\)就会贡献\(p_1\)。当固定左端点为\(L\),右端在\([i+1,R-1]\)之间的时候会贡献\(p_2\);固定右端点\(R\)是同理。还要额外加上\(i,i+1\)贡献的\(p_1\)。
具体实现就可以使用扫描线+树状数组之类的方法。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 200005
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n,m;
ll p1,p2;
int a[N];
int L[N],R[N];
void pre() {
int st[N],top;
st[top=0]=0;
for(int i=1;i<=n;i++) {
while(top&&a[st[top]]<a[i]) top--;
L[i]=st[top]+1;
st[++top]=i;
}
st[top=0]=n+1;
for(int i=n;i>=1;i--) {
while(top&&a[st[top]]<a[i]) top--;
R[i]=st[top]-1;
st[++top]=i;
}
}
struct query {
int l,r;
int id;
bool operator <(const query &a)const {return l<a.l;}
}q[N];
bool cmpl(const query &a,const query &b) {return a.l<b.l;}
bool cmpL(const query &a,const query &b) {return a.l>b.l;}
bool cmpR(const query &a,const query &b) {return a.r<b.r;}
struct Bit {
ll tem[N];
int low(int i) {return i&(-i);}
void add(int v,int f) {for(int i=v;i<=n;i+=low(i)) tem[i]+=f;}
ll ask(int v) {
ll ans=0;
for(int i=v;i;i-=low(i)) ans+=tem[i];
return ans;
}
void Init() {memset(tem,0,sizeof(tem));}
}T,Size;
ll ans[N];
vector<int>del[N];
int main() {
n=Get(),m=Get(),p1=Get(),p2=Get();
for(int i=1;i<=n;i++) a[i]=Get();
pre();
for(int i=1;i<=m;i++) q[i].l=Get(),q[i].r=Get(),q[i].id=i;
for(int i=1;i<=m;i++) {
ans[q[i].id]+=(q[i].r-q[i].l)*p1;
}
sort(q+1,q+1+m,cmpl);
for(int i=1;i<=n;i++) del[L[i]-1].push_back(R[i]+1);
for(int i=1;i<=n;i++) T.add(R[i]+1,1);
int tag=0;
for(int i=1;i<=m;i++) {
while(tag<q[i].l) {
while(del[tag].size()) {
T.add(del[tag].back(),-1);
del[tag].pop_back();
}
tag++;
}
ans[q[i].id]+=T.ask(q[i].r)*p1;
}
for(int i=1;i<=n+1;i++) del[i].clear();
T.Init();
tag=1;
for(int i=1;i<=n;i++) del[R[i]].push_back(i);
sort(q+1,q+1+m,cmpR);
for(int i=1;i<=m;i++) {
while(tag<=q[i].r) {
T.add(n-L[tag]+2,-tag);
Size.add(n-L[tag]+2,1);
while(del[tag].size()) {
int x=del[tag].back();
T.add(n-L[x]+2,x);
Size.add(n-L[x]+2,-1);
T.add(n-L[x]+2,R[x]-x);
del[tag].pop_back();
}
tag++;
}
ans[q[i].id]+=p2*(Size.ask(n-q[i].l+1)*q[i].r+T.ask(n-q[i].l+1));
}
for(int i=0;i<=n+1;i++) del[i].clear();
T.Init(),Size.Init();
sort(q+1,q+1+m,cmpL);
tag=n;
for(int i=1;i<=n;i++) del[L[i]].push_back(i);
for(int i=1;i<=m;i++) {
while(tag>=q[i].l) {
T.add(R[tag]+1,tag);
Size.add(R[tag]+1,1);
while(del[tag].size()) {
int x=del[tag].back();
T.add(R[x]+1,-x);
Size.add(R[x]+1,-1);
T.add(R[x]+1,x-L[x]);
del[tag].pop_back();
}
tag--;
}
ans[q[i].id]+=p2*(T.ask(q[i].r)-Size.ask(q[i].r)*q[i].l);
}
for(int i=1;i<=m;i++) cout<<ans[i]<<"\n";
return 0;
}
「AHOI / HNOI2017」影魔的更多相关文章
- LOJ#2019. 「AHOI / HNOI2017」影魔
题意: 在一个序列中 如果有一个子区间 它有一个端点是区间最大值 另一个端点不是这个区间的次大值 就会有p2的贡献 它两个端点分别是最大值次大值 就会有p1的贡献 我们发现这两个条件有一个重合的部分 ...
- loj#2020 「AHOI / HNOI2017」礼物 ntt
loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变 ...
- 「AHOI / HNOI2017」单旋
「AHOI / HNOI2017」单旋 题目链接 H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种 ...
- loj #2023. 「AHOI / HNOI2017」抛硬币
#2023. 「AHOI / HNOI2017」抛硬币 题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个 ...
- loj #2021. 「AHOI / HNOI2017」大佬
#2021. 「AHOI / HNOI2017」大佬 题目描述 人们总是难免会碰到大佬.他们趾高气昂地谈论凡人不能理解的算法和数据结构,走到任何一个地方,大佬的气场就能让周围的人吓得瑟瑟发抖,不敢 ...
- [LOJ 2022]「AHOI / HNOI2017」队长快跑
[LOJ 2022]「AHOI / HNOI2017」队长快跑 链接 链接 题解 不难看出,除了影响到起点和终点的射线以外,射线的角度没有意义,因为如果一定要从该射线的射出一侧过去,必然会撞到射线 因 ...
- 「AHOI / HNOI2017」礼物
「AHOI / HNOI2017」礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰 ...
- loj#2020. 「AHOI / HNOI2017」礼物
题意:给定xy数组求 \(\sum_{i=0}^{n-1}(x_i+y_{(i+k)\modn}+c)^2\) 题解:先化简可得 \(n*c^2+2*\sum_{i=0}^{n-1}x_i-y_i+\ ...
- Loj #2495. 「AHOI / HNOI2018」转盘
Loj #2495. 「AHOI / HNOI2018」转盘 题目描述 一次小 G 和小 H 原本准备去聚餐,但由于太麻烦了于是题面简化如下: 一个转盘上有摆成一圈的 \(n\) 个物品(编号 \(1 ...
随机推荐
- SET XACT_ABORT ON是什么?
避免自己遗忘,在这里做个笔记: SET XACT_ABORT ON:强制事务回滚,如果不加这句的话事务有可能回滚失败.
- .NET Core 实践一:微服务架构的优点(转)
微服务现在已经是各种互联网应用首选的云架构组件,无论是 BAT 还是 滴滴.美团 ,微服务都是重要的一环. 相对于微服务,传统应用架构有以下缺点: 1. 业务代码混杂,团队成员职责边界不清,团队协作体 ...
- python网络聊天器多线程版
在之前的一篇文章(python网络编程-udp)中实现了一个简单的udp聊天器,只能在单线程下进行收发数据,在学习完多线程之后,实现一个能同时收发数据的udp聊天器. 说明: 编写一个有2个线程的程序 ...
- 输出映射resultMap
①:编写接口方法 /** * 根据id查询用户 * @param id * @return */ public User queryUserById3(Integer id); ②:编写映射文件 1: ...
- Ext.isEmpty()的使用
说明如下: isEmpty( Object value, Boolean allowEmptyString ) : Boolean 如果传递的值为空,则返回 true,否则返回 false.该值被认为 ...
- 微信小程序使用wxParse,解决图片显示路径问题
我们经常用到发布文章,用的是UEditor百度富文本编辑器,方便排版,存储的也是html代码,这样小程序解析出来的也是排版的样式,但是使用wxParse解析html的时候,因为存储的是图片的相对路径, ...
- javaScript 设计模式之中介者模式示例
飞机把注册信息放到铁塔里,发送数据到铁塔,报告其它的飞机一些信息. var feiji = function( name ){ this.name = name; } feiji.prototype. ...
- 2018-11-23 手工翻译Vue.js源码:尝试重命名标识符与文本
续前文: 手工翻译Vue.js源码第一步:14个文件重命名 对core/instance/索引中的变量, 方法进行重命名如下(题图): import { 混入初始化 } from './初始化' im ...
- DES数据解密
/// <summary> /// DES数据解密 /// </summary> /// <param name="targetValue">& ...
- vue 构建项目遇到的问题
1.我在打包完成后,打开index.html文件发现地址并没有携带路由. config下的 index.js 中的build命令的配置有一个属性叫assetsPublicPath,它的值为‘/’.意思 ...