【bzoj4945】[Noi2017]游戏(搜索+2-sat)
题意:
现在有\(a,b,c\)三种车,每个赛道可能会存在限制:\(a\)表示不能选择\(a\)类型的赛车,\(b,c\)同理;\(x\)表示该赛道不受限制,但\(x\)类型的个数$$d\leq 8\(。
同时赛道之间还存在\)m\(条关系,每个关系用\)(i\ h_i\ j\ h_j)\(表示,意味着若在第\)i\(个赛道选择\)h_i\(类的车,则必须在\)j\(赛道选择\)h_j\(类的车。
现在问是否存在一种合法安排赛车的方案,有则任意输出一种方案,没有则输出\)-1$。
思路:
- \(x\)类赛道个数较少,我们先不考虑其存在,那么问题变为了一个存在一些限制条件的\(2-sat\)问题,我们先来解决这个问题。
- 对于合法的限制,直接连边即可;若\(i\)赛道不能有\(h_i\),因为我们本来就不考虑\(h_i\)的存在(2-sat问题),那么我们直接无视当前的限制;若\(j\)赛道不能有\(h_j\),此时表示不能选\(h_i\),那么连边\(h_i\rightarrow h_i'\)即可。
- 然后考虑\(x\)类赛道,因为个数很少,所以我们可以直接\(3^d\)枚举选择哪些情况,复杂度变为\(O(3^dn)\)。
- 然后这里有个特别巧妙的想法,就是正难则反,我们考虑枚举不选哪个,那么\(x\)类赛道也变成了某类具体的赛道。首先问题处理上方便了许多,统一为\(2-sat\)问题;其次,复杂度将为\(2^d\),因为假设我们当前不选\(a\),那么可以选择\(b,c\),不选\(b\),那么可以选择\(a,c\),这样可以覆盖所有的情况了。
所以通过\(2^d\)枚举,问题转换为了一个带限制\(2-sat\)问题。感觉还是挺巧妙的,上午有点累没好好想,可惜了QAQ
代码如下:
/*
* Author: heyuhhh
* Created Time: 2019/12/2 11:21:16
*/
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <iomanip>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 1e5 + 5, M = 1e5 + 5;
int n, m, d;
char s[N], t[N];
int pos[N], tot;
char x[N];
struct Edge {
int i, j;
char pi, pj;
}e[M];
vector<int> G[N], rG[N], vs;
int used[N], bel[N];
void adde(int from, int to) {
G[from].push_back(to);
rG[to].push_back(from);
}
void dfs(int v) {
used[v] = true;
for(int u: G[v]) {
if(!used[u])
dfs(u);
}
vs.push_back(v);
}
void rdfs(int v, int k) {
used[v] = true;
bel[v] = k;
for(int u: rG[v])
if(!used[u])
rdfs(u, k);
}
int scc() {
memset(used, 0, sizeof(used));
vs.clear();
for(int v = 1; v <= 2 * n; ++v)
if(!used[v]) dfs(v);
memset(used, 0, sizeof(used));
int k = 0;
for(int i = (int) vs.size() - 1; i >= 0; --i)
if(!used[vs[i]]) rdfs(vs[i], k++);
return k;
}
void work() {
for(int i = 1; i <= 2 * n; i++) G[i].clear(), rG[i].clear();
for(int i = 1; i <= n; i++) {
if(t[i] == 'a') {
x[i] = 'b';
x[i + n] = 'c';
} else if(t[i] == 'b') {
x[i] = 'a';
x[i + n] = 'c';
} else {
x[i] = 'a';
x[i + n] = 'b';
}
}
for(int i = 1; i <= m; i++) {
int u = e[i].i, v = e[i].j;
char pi = e[i].pi, pj = e[i].pj;
if(t[u] == pi) continue;
if(t[v] == pj) {
if(x[u] == pi) adde(u, u + n);
else adde(u + n, u);
} else {
if(x[u] == pi) {
if(x[v] == pj) adde(u, v), adde(v + n, u + n);
else adde(u, v + n), adde(v, u + n);
} else {
if(x[v] == pj) adde(u + n, v), adde(v + n, u);
else adde(u + n, v + n), adde(v, u);
}
}
}
scc();
for(int i = 1; i <= n; i++) {
if(bel[i] == bel[i + n]) return;
}
for(int i = 1; i <= n; i++) {
if(bel[i] > bel[i + n]) {
printf("%c", x[i] - 'a' + 'A');
} else printf("%c", x[i + n] - 'a' + 'A');
}
cout << '\n';
exit(0);
}
void go(int cur) {
if(cur > tot) {
work(); return;
}
t[pos[cur]] = 'a'; go(cur + 1);
t[pos[cur]] = 'b'; go(cur + 1);
}
void run(){
scanf("%s", s + 1);
for(int i = 1; i <= n; i++) {
t[i] = s[i];
if(s[i] == 'x') pos[++tot] = i;
}
cin >> m;
for(int i = 1; i <= m; i++) {
int u, v;
char pi, pj;
scanf("%d %c %d %c", &u, &pi, &v, &pj);
pi = pi - 'A' + 'a';
pj = pj - 'A' + 'a';
e[i] = Edge {u, v, pi, pj};
}
go(1);
cout << -1 << '\n';
}
int main() {
while(cin >> n >> d) run();
return 0;
}
【bzoj4945】[Noi2017]游戏(搜索+2-sat)的更多相关文章
- BZOJ 4945 NOI2017 游戏 搜索+2-SAT
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4945 分析: 首先考虑没有x的情况,发现有一个明显的推理模型,容易看出来可以用2-SAT ...
- [BZOJ4945][Noi2017]游戏 2-sat
对于所有的x,我们枚举他的地图类型,事实上我们只需要枚举前两种地形就可以覆盖所有的情况. 之后就变成了裸的2-sat问题. 对于一个限制,我们分类讨论: 1.h[u]不可选,跳过 2.h[v]不可选, ...
- [bzoj4945][Noi2017]游戏
题目大意:有$n$个位置,有三种数,每个位置只可以填一种数,$d(d\leqslant8)$个位置有三种选择,其他位置只有两种选择.有一些限制,表示第$i$个位置选了某种数,那么第$j$个位置就只能选 ...
- 【BZOJ4945】[Noi2017]游戏 2-SAT
[BZOJ4945][Noi2017]游戏 题目描述 题解:2-SAT学艺不精啊! 这题一打眼看上去是个3-SAT?哎?3-SAT不是NPC吗?哎?这题x怎么只有8个?暴力走起! 因为x要么不是A要么 ...
- P3825 [NOI2017]游戏
题目 P3825 [NOI2017]游戏 做法 \(x\)地图外的地图好做,模型:\((x,y)\)必须同时选\(x \rightarrow y,y^\prime \rightarrow x^\pri ...
- [Luogu P3825] [NOI2017] 游戏 (2-SAT)
[Luogu P3825] [NOI2017] 游戏 (2-SAT) 题面 题面较长,略 分析 看到这些约束,应该想到这是类似2-SAT的问题.但是x地图很麻烦,因为k-SAT问题在k>2的时候 ...
- 并不对劲的bzoj4945:loj2305:uoj317:p3825[NOI2017]游戏
题目大意 2-SAT,其中有\(d\)(\(d\leq 8\))个点是\(3-SAT\). 题解 枚举\(d\)个点不取三个中(假设三个为\(a,b,c\))的哪一个,然后整体变成做\(2-SAT\) ...
- BZOJ4945 & 洛谷3825 & UOJ317:[NOI2017]游戏——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4945 https://www.luogu.org/problemnew/show/P3825 ht ...
- NOIp 2011 mayan游戏 搜索
题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指在规定 ...
随机推荐
- Mysql - 高可用方案之MMM(二)
一.概述 上一篇博客中(https://www.cnblogs.com/ddzj01/p/11535796.html)介绍了如何搭建MMM架构,本文将通过实验介绍MMM架构的优缺点. 二.优点 1. ...
- C# 使用.net core 驱动树莓派的IO信号
如何使用.net core来驱动树莓派的IO信号?是我们的实际项目需求中,可能就会有这种小项目,我们要输出一个IO信号,此处我们拿了树莓派4做测试 一共有两排引脚,引脚的顺序定义及功能如下: 我们就参 ...
- sql server 字符数据类型
SQL Server 中字符类型包括varchar.char.text等.主要用于存储字符数据.varchar和char类型的主要区别在于数据填充.例如,一个列名为FirstName且数据类型为var ...
- How to: Change the Format Used for the FullAddress and FullName Properties 如何:更改用于FullAddress和FullName属性的格式
There are FullAddress and FullName properties in the Address and Person business classes that are su ...
- 测试工程师如何使用 CODING 进行测试管理
CODING 为您的企业提供从概念到软件开发再到产品发布的全流程全周期软件研发管理,为您的研发团队提供全程助力,帮助研发团队捋清需求.不断迭代.快速反馈并能实时追踪项目进度直到完成.同时 CODING ...
- 《Web Development with Go》Mangodb插入struct数据
学习数据持久化. package main import ( "fmt" "log" "time" "gopkg.in/mgo.v ...
- [考试反思]1111csp-s模拟测试110:三思
题目名是为了照应3天的倒计时(我才不会说是因为我考场又摸鱼了) 在OJ上得到了295的好成绩,但是本地评测没有O2掉了10分. 总体来说还可以.T1全场切,T2半场切,T3纯暴力不卡常都有95... ...
- Exe4j 打包: this executable was created with an evaluation version of exe4j
异常 this executable was created with an evaluation version of exe4j 异常.png 问题原因 当前打包使用exe4j未授权 解决方法 ...
- 解决python安装第三方库超时问题
这里说明一下,配置文件中的url还可以换成下面的URL 阿里云 http://mirrors.aliyun.com/pypi/simple/ 中国科技大学 https://pypi.mirrors.u ...
- docker容器中安装vim 、telnet、ifconfig命令
一.在使用docker容器时,有时候里边没有安装vim,敲vim命令时提示说:vim: command not found 问题:apt-get install vim安装vim 命令时,提示:如下内 ...