nyoj 17-单调递增最长子序列 && poj 2533(动态规划,演算法)
17-单调递增最长子序列
内存限制:64MB
时间限制:3000ms
Special Judge: No
accepted:21
submit:49
题目描述:
如:dabdbf最长递增子序列就是abdf,长度为4
输入描述:
第一行一个整数0<n<20,表示有n个字符串要处理
随后的n行,每行有一个字符串,该字符串的长度不会超过10000
输出描述:
输出字符串的最长递增子序列的长度
样例输入:
3
aaa
ababc
abklmncdefg
样例输出:
1
3
7 nyoj 17 分析(动态规划):
①、要求整体的最大长度,我们可以从局部的最大长度来考虑;
②、从左到右依次考虑,每遇到一个点就从第一位开始遍历到该点,看以这个点作为前缀是否为最大值
③、状态方程:dp[i] = max(dp[i], d[j] + 1); 步骤:
①、从左到右依次遍历每一个点;
②、在该点基础上再从前到后通过 dp[i] = max(dp[i], d[j] + 1) 得出该点最大的值 核心代码:
for(int i = ; i < n; ++ i)
{
dp[i] = ; //初始化每个dp[MAXN];
for(int j = ; j < i; ++ j)
if(s[j] < s[i]) dp[i] = max(dp[i], dp[j] + ); //找出所有满足条件的s[j] ==> dp[i]最大值
ans = max(ans, dp[i]);
}
C/C++代码实现(AC):
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <queue>
#include <set>
#include <map>
#include <stack> using namespace std;
const int MAXN = ; int main ()
{
int t;
scanf("%d", &t);
while(t --)
{
char s[MAXN];
scanf("%s", s);
int len = strlen(s), ans = -0x3f3f3f3f, dp[MAXN];
for(int i = ; i < len; ++ i)
{
dp[i] = ;
for(int j = ; j < i; ++ j)
if (s[j] < s[i])
dp[i] = max(dp[i], dp[j] + );
ans = max(ans, dp[i]);
}
printf("%d\n", ans);
}
return ;
}
※nyoj 17分析(演算法)【推荐】:
①、找出酱紫的序列:从左到右的排列是由ASCⅡ码递增;
②、且每一组相邻的点ASCⅡ之差最小,及就是最为接近 核心代码:
cnt = ; temp[] = s[];
for(int i = ; i < n; ++ i)
{
if(temp[cnt] < s[i]) temp[++cnt] = s[i] // cnt + 1即为所求
else
{
for(int j = ; j <= cnt; ++ j)
{
if(s[i] <= temp[j])
{
temp[j] = s[i];
break;
}
}
}
}
C/C++代码实现(AC):
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <queue>
#include <set>
#include <map>
#include <stack> using namespace std;
const int MAXN = ; int main ()
{
int t;
scanf("%d", &t);
while(t --)
{
char s[MAXN], temp[MAXN];
scanf("%s", s); int len = strlen(s), cnt = ;
temp[] = s[];
for(int i = ; i < len; ++ i)
{
if(temp[cnt] < s[i])
{
temp[++cnt] = s[i];
continue;
} for(int j = ; j <= cnt; ++ j)
{
if(s[i] <= temp[j])
{
temp[j] = s[i];
break;
}
}
}
printf("%d\n", cnt + );
}
return ;
}
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 60426 | Accepted: 27062 |
Description
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
Output
Sample Input
7
1 7 3 5 9 4 8
Sample Output
4
※poj 2533 分析(演算法)【推荐】:
①、找出酱紫的序列:从左到右的排列是由ASCⅡ码递增;
②、且每一组相邻的点ASCⅡ之差最小,及就是最为接近.
核心代码:
int temp[] = A[], cnt = ; // cnt + 1 即为所求
for(int i = ; i < n; ++ i)
{
if (temp[cnt] < A[i]) temp[++cnt] = A[i];
else
{
for(int j = ; i <= cnt; ++ j)
{
if(A[i] <= temp[j])
{
temp[j] = A[i]; // 保证序列ASCⅡ之和最小化
break;
}
}
}
}
C/C++代码实现(AC):
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <stack>
#include <map>
#include <queue> using namespace std;
const int MAXN = ;
int A[MAXN], temp[MAXN]; int main()
{
int n, cnt = ;
scanf("%d", &n);
for(int i = ; i < n; ++ i)
scanf("%d", &A[i]); temp[] = A[];
for(int i = ; i < n; ++ i)
{
if(temp[cnt] < A[i]) temp[++ cnt] = A[i];
else
{
for(int j = ; j <= cnt; ++ j)
{
if(A[i] <= temp[j])
{
temp[j] = A[i];
break;
}
}
}
}
printf("%d\n", cnt + );
return ;
}
nyoj 17-单调递增最长子序列 && poj 2533(动态规划,演算法)的更多相关文章
- 最长递增子序列问题 nyoj 17单调递增最长子序列 nyoj 79拦截导弹
一, 最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1< ...
- nyoj 17 单调递增最长子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- nyoj 题目17 单调递增最长子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- nyoj 单调递增最长子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- 【LCS,LIS】最长公共子序列、单调递增最长子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- NYOJ17,单调递增最长子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描写叙述 求一个字符串的最长递增子序列的长度 如:dabdbf最长递增子序列就是abdf.长度为4 输入 第 ...
- ny17 单调递增最长子序列
单调递增最长子序列时间限制:3000 ms | 内存限制:65535 KB难度:4 描述 求一个字符串的最长递增子序列的长度 如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- nyoj_17_单调递增最长子序列_201403121516
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- 单调递增最长子序列(南阳理工ACM)
描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 第一行一个整数0<n<20,表示有n个字符串要处理随后的n行,每行有一个字符串,该字符串 ...
随机推荐
- shark恒破解笔记3-EAX决定胜负
PEID查壳 od载入 输入假的注册码 查找出错字符串 往上查找是否有关键跳转和关键call 可以看到此处有个je跳转 实现了跳转,并且跳过了我们注册成功的地址 网上查找这个跳转的关键call,这个c ...
- PHP 调试脚本
如果想要通过php.exe直接运行和调试脚本,可以在PHPStorm配置如下: 1.PHP安装XDebug的扩展. 2.在PHPStorm中,配置XDebug: 1) 打开菜单 "文件&qu ...
- 解决seajs ie8 对象不支持charAt 属性。
在使用 seajs做项目,今天偶然发现在ie9以下的ie版本会 报出 对象不支持charAt 属性.刚开始还以为是自己写的js部分出了问题,经过几个小时的奋战.最终找到了其根源.在sea-debug. ...
- luogu P3936 Coloring
[返回模拟退火略解] 题目描述 在一个 n×mn\times mn×m 的矩阵中,每个点都染了一种颜色(只能是 [1,c][1,c][1,c] 中的一种),求一种方案,使得相邻异色点对数最小. Sol ...
- php服务器有哪些
服务器按照功能可以分为:文件服务器.数据库服务器.web服务器.邮件服务器.代理服务器..... 而上述所有的服务器,均可以用php做开发,比如说做web服务器,常用的构架是php+Mysql+Apa ...
- c语言1博客作业02
c语言1博客作业02 这个作业属于哪个课程 C语言程序设计 这个作业的要求在哪 [作业要求](https://edu.cnblogs.com/campus/zswxy/SE2019-2/homewor ...
- Node.js事件的正确使用方法
前言 事件驱动的编程变得流行之前,在程序内部进行通信的标准方法非常简单:如果一个组件想要向另外一个发送消息,只是显式地调用了那个组件上的方法.但是在 react 中用的却是事件驱动而不是调用. 事件的 ...
- SpringBoot学习(三)探究Springboot自动装配
目录 什么是自动装配 何时自动装配 原理分析 注:以下展示的代码springboot的版本为2.0.3版.因源码过长,大家选择展开代码 ㄟ( ▔, ▔ )ㄏ 什么是自动装配 自动装配还是利用了Spri ...
- Codeblocks 等软件 修改源代码后 不能立即执行的解决办法||exe文件删除慢
不懈地奋斗了两天,终于找到原因了. 记录如下 症状: Codeblocks .Visual Studio 都出现此问题:修改源代码 无法立即执行 ,就是:cannot open output file ...
- 关于javascript闭包的最通俗易懂的理解
这两天在研究闭包,网上一通找,有牛人写的帖子,有普通人写的帖子,但是大多没戳中本小白所纠结的点,而且大多插入了立即执行函数,其实根本不需要的,反而让人产生了误解.这里我用我的方式讲解一下闭包. 1.目 ...