nyoj 17-单调递增最长子序列 && poj 2533(动态规划,演算法)
17-单调递增最长子序列
内存限制:64MB
时间限制:3000ms
Special Judge: No
accepted:21
submit:49
题目描述:
如:dabdbf最长递增子序列就是abdf,长度为4
输入描述:
第一行一个整数0<n<20,表示有n个字符串要处理
随后的n行,每行有一个字符串,该字符串的长度不会超过10000
输出描述:
输出字符串的最长递增子序列的长度
样例输入:
3
aaa
ababc
abklmncdefg
样例输出:
1
3
7 nyoj 17 分析(动态规划):
①、要求整体的最大长度,我们可以从局部的最大长度来考虑;
②、从左到右依次考虑,每遇到一个点就从第一位开始遍历到该点,看以这个点作为前缀是否为最大值
③、状态方程:dp[i] = max(dp[i], d[j] + 1); 步骤:
①、从左到右依次遍历每一个点;
②、在该点基础上再从前到后通过 dp[i] = max(dp[i], d[j] + 1) 得出该点最大的值 核心代码:
for(int i = ; i < n; ++ i)
{
dp[i] = ; //初始化每个dp[MAXN];
for(int j = ; j < i; ++ j)
if(s[j] < s[i]) dp[i] = max(dp[i], dp[j] + ); //找出所有满足条件的s[j] ==> dp[i]最大值
ans = max(ans, dp[i]);
}
C/C++代码实现(AC):
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <queue>
#include <set>
#include <map>
#include <stack> using namespace std;
const int MAXN = ; int main ()
{
int t;
scanf("%d", &t);
while(t --)
{
char s[MAXN];
scanf("%s", s);
int len = strlen(s), ans = -0x3f3f3f3f, dp[MAXN];
for(int i = ; i < len; ++ i)
{
dp[i] = ;
for(int j = ; j < i; ++ j)
if (s[j] < s[i])
dp[i] = max(dp[i], dp[j] + );
ans = max(ans, dp[i]);
}
printf("%d\n", ans);
}
return ;
}
※nyoj 17分析(演算法)【推荐】:
①、找出酱紫的序列:从左到右的排列是由ASCⅡ码递增;
②、且每一组相邻的点ASCⅡ之差最小,及就是最为接近 核心代码:
cnt = ; temp[] = s[];
for(int i = ; i < n; ++ i)
{
if(temp[cnt] < s[i]) temp[++cnt] = s[i] // cnt + 1即为所求
else
{
for(int j = ; j <= cnt; ++ j)
{
if(s[i] <= temp[j])
{
temp[j] = s[i];
break;
}
}
}
}
C/C++代码实现(AC):
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <queue>
#include <set>
#include <map>
#include <stack> using namespace std;
const int MAXN = ; int main ()
{
int t;
scanf("%d", &t);
while(t --)
{
char s[MAXN], temp[MAXN];
scanf("%s", s); int len = strlen(s), cnt = ;
temp[] = s[];
for(int i = ; i < len; ++ i)
{
if(temp[cnt] < s[i])
{
temp[++cnt] = s[i];
continue;
} for(int j = ; j <= cnt; ++ j)
{
if(s[i] <= temp[j])
{
temp[j] = s[i];
break;
}
}
}
printf("%d\n", cnt + );
}
return ;
}
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 60426 | Accepted: 27062 |
Description
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
Output
Sample Input
7
1 7 3 5 9 4 8
Sample Output
4
※poj 2533 分析(演算法)【推荐】:
①、找出酱紫的序列:从左到右的排列是由ASCⅡ码递增;
②、且每一组相邻的点ASCⅡ之差最小,及就是最为接近.
核心代码:
int temp[] = A[], cnt = ; // cnt + 1 即为所求
for(int i = ; i < n; ++ i)
{
if (temp[cnt] < A[i]) temp[++cnt] = A[i];
else
{
for(int j = ; i <= cnt; ++ j)
{
if(A[i] <= temp[j])
{
temp[j] = A[i]; // 保证序列ASCⅡ之和最小化
break;
}
}
}
}
C/C++代码实现(AC):
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <stack>
#include <map>
#include <queue> using namespace std;
const int MAXN = ;
int A[MAXN], temp[MAXN]; int main()
{
int n, cnt = ;
scanf("%d", &n);
for(int i = ; i < n; ++ i)
scanf("%d", &A[i]); temp[] = A[];
for(int i = ; i < n; ++ i)
{
if(temp[cnt] < A[i]) temp[++ cnt] = A[i];
else
{
for(int j = ; j <= cnt; ++ j)
{
if(A[i] <= temp[j])
{
temp[j] = A[i];
break;
}
}
}
}
printf("%d\n", cnt + );
return ;
}
nyoj 17-单调递增最长子序列 && poj 2533(动态规划,演算法)的更多相关文章
- 最长递增子序列问题 nyoj 17单调递增最长子序列 nyoj 79拦截导弹
一, 最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1< ...
- nyoj 17 单调递增最长子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- nyoj 题目17 单调递增最长子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- nyoj 单调递增最长子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- 【LCS,LIS】最长公共子序列、单调递增最长子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- NYOJ17,单调递增最长子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描写叙述 求一个字符串的最长递增子序列的长度 如:dabdbf最长递增子序列就是abdf.长度为4 输入 第 ...
- ny17 单调递增最长子序列
单调递增最长子序列时间限制:3000 ms | 内存限制:65535 KB难度:4 描述 求一个字符串的最长递增子序列的长度 如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- nyoj_17_单调递增最长子序列_201403121516
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- 单调递增最长子序列(南阳理工ACM)
描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 第一行一个整数0<n<20,表示有n个字符串要处理随后的n行,每行有一个字符串,该字符串 ...
随机推荐
- python学习-模块与包(九)
9.4查看模块内容 dir(): 返回模块或类所包含的全部程序单元(包括变量.函数.类和方法等) __all__:模块本身提供的变量,不会展示以下划线开头的程序单元.另使用from xx import ...
- C#刷遍Leetcode面试题系列连载(5):No.593 - 有效的正方形
上一篇 LeetCode 面试题中,我们分析了一道难度为 Easy 的数学题 - 自除数,提供了两种方法.今天我们来分析一道难度为 Medium 的面试题. 今天要给大家分析的面试题是 LeetCod ...
- 百万年薪python之路 -- HTML基础
一. Web标准 web标准: w3c:万维网联盟组织,用来制定web标准的机构(组织) web标准:制作网页遵循的规范 web标准规范的分类:结构标准.表现标准.行为标准. 结构:html.表示:c ...
- 百万年薪python之路 -- 数据库初始
一. 数据库初始 1. 为什么要有数据库? 先来一个场景: 假设现在你已经是某大型互联网公司的高级程序员,让你写一个火车票购票系统,来hold住十一期间全国的购票需求,你怎么写? 由于在同一时 ...
- PHP的陷阱
PHP的陷阱 写代码的时候有个疑惑,那就是数组下标不存在的时候就会挂掉Undefined Index XXXX,这是对的,但是有时候他就不报错,这又是矛盾的. 请看下面的例子: $json_raw = ...
- 【原创】怎样才能写出优雅的 Java 代码?这篇文章告诉你答案!
本文已经收录自 JavaGuide (59k+ Star):[Java学习+面试指南] 一份涵盖大部分Java程序员所需要掌握的核心知识. 本文比较简短,基本就是推荐一些对于写好代码非常有用的文章或者 ...
- Python+requests+unittest+excel实现接口自动化测试框架(摘录)
一.框架结构: 工程目录 二.Case文件设计 三.基础包 base 3.1 封装get/post请求(runmethon.py) 1 import requests 2 import json 3 ...
- EXCEL批量导入到Sqlserver数据库并进行两表间数据的批量修改
Excel 大量数据导入到sqlserver生成临时表并将临时表某字段的数据批量更新的原表中的某个字段 1:首先要对EXCEL进行处理 列名改成英文,不要有多余的列和行(通过ctrl+shift 左或 ...
- 暑期集训20190730 取模(mod)
[题目描述] 给定一个长度为n的非负整数序列a,你需要支持以下操作: 1:给定l,r,输出a[l]+a[l+1]+…+a[r]. 2:给定l,r,x,将a[l],a[l+1],…,a[r]对x取模. ...
- CF464D World of Darkraft - 2
Roma 在游戏"World of Darkraft"(理论上应该是 World of darkcraft,MineCraft 的一个版本)找到一个新角色. \(\mathrm{R ...