17-单调递增最长子序列

内存限制:64MB
时间限制:3000ms
Special Judge: No

accepted:21
submit:49

题目描述:

求一个字符串的最长递增子序列的长度
如:dabdbf最长递增子序列就是abdf,长度为4

输入描述:

第一行一个整数0<n<20,表示有n个字符串要处理
随后的n行,每行有一个字符串,该字符串的长度不会超过10000

输出描述:

输出字符串的最长递增子序列的长度

样例输入:

复制

3
aaa
ababc
abklmncdefg

样例输出:

1
3
7 nyoj 17 分析(动态规划):
  ①、要求整体的最大长度,我们可以从局部的最大长度来考虑;
  ②、从左到右依次考虑,每遇到一个点就从第一位开始遍历到该点,看以这个点作为前缀是否为最大值
  ③、状态方程:dp[i] = max(dp[i], d[j] + 1); 步骤:
  ①、从左到右依次遍历每一个点;
  ②、在该点基础上再从前到后通过 dp[i] = max(dp[i], d[j] + 1) 得出该点最大的值 核心代码:
 for(int i = ; i < n; ++ i)
{
dp[i] = ; //初始化每个dp[MAXN];
for(int j = ; j < i; ++ j)
if(s[j] < s[i]) dp[i] = max(dp[i], dp[j] + ); //找出所有满足条件的s[j] ==> dp[i]最大值
ans = max(ans, dp[i]);
}

C/C++代码实现(AC):

 #include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <queue>
#include <set>
#include <map>
#include <stack> using namespace std;
const int MAXN = ; int main ()
{
int t;
scanf("%d", &t);
while(t --)
{
char s[MAXN];
scanf("%s", s);
int len = strlen(s), ans = -0x3f3f3f3f, dp[MAXN];
for(int i = ; i < len; ++ i)
{
dp[i] = ;
for(int j = ; j < i; ++ j)
if (s[j] < s[i])
dp[i] = max(dp[i], dp[j] + );
ans = max(ans, dp[i]);
}
printf("%d\n", ans);
}
return ;
}
※nyoj 17分析(演算法)【推荐】:
  ①、找出酱紫的序列:从左到右的排列是由ASCⅡ码递增;
  ②、且每一组相邻的点ASCⅡ之差最小,及就是最为接近 核心代码:
 cnt = ; temp[] = s[];
for(int i = ; i < n; ++ i)
{
if(temp[cnt] < s[i]) temp[++cnt] = s[i] // cnt + 1即为所求
else
{
for(int j = ; j <= cnt; ++ j)
{
if(s[i] <= temp[j])
{
temp[j] = s[i];
break;
}
}
}
}

C/C++代码实现(AC):

 #include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <queue>
#include <set>
#include <map>
#include <stack> using namespace std;
const int MAXN = ; int main ()
{
int t;
scanf("%d", &t);
while(t --)
{
char s[MAXN], temp[MAXN];
scanf("%s", s); int len = strlen(s), cnt = ;
temp[] = s[];
for(int i = ; i < len; ++ i)
{
if(temp[cnt] < s[i])
{
temp[++cnt] = s[i];
continue;
} for(int j = ; j <= cnt; ++ j)
{
if(s[i] <= temp[j])
{
temp[j] = s[i];
break;
}
}
}
printf("%d\n", cnt + );
}
return ;
}
Longest Ordered Subsequence
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 60426   Accepted: 27062

Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

※poj 2533 分析(演算法)【推荐】:
  ①、找出酱紫的序列:从左到右的排列是由ASCⅡ码递增;
  ②、且每一组相邻的点ASCⅡ之差最小,及就是最为接近.

核心代码:

  

 int temp[] = A[], cnt = ; // cnt + 1 即为所求
for(int i = ; i < n; ++ i)
{
if (temp[cnt] < A[i]) temp[++cnt] = A[i];
else
{
for(int j = ; i <= cnt; ++ j)
{
if(A[i] <= temp[j])
{
temp[j] = A[i]; // 保证序列ASCⅡ之和最小化
break;
}
}
}
}

C/C++代码实现(AC):

 #include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <stack>
#include <map>
#include <queue> using namespace std;
const int MAXN = ;
int A[MAXN], temp[MAXN]; int main()
{
int n, cnt = ;
scanf("%d", &n);
for(int i = ; i < n; ++ i)
scanf("%d", &A[i]); temp[] = A[];
for(int i = ; i < n; ++ i)
{
if(temp[cnt] < A[i]) temp[++ cnt] = A[i];
else
{
for(int j = ; j <= cnt; ++ j)
{
if(A[i] <= temp[j])
{
temp[j] = A[i];
break;
}
}
}
}
printf("%d\n", cnt + );
return ;
}

nyoj 17-单调递增最长子序列 && poj 2533(动态规划,演算法)的更多相关文章

  1. 最长递增子序列问题 nyoj 17单调递增最长子序列 nyoj 79拦截导弹

    一,    最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1< ...

  2. nyoj 17 单调递增最长子序列

    单调递增最长子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4   输入 ...

  3. nyoj 题目17 单调递增最长子序列

    单调递增最长子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4   输入 ...

  4. nyoj 单调递增最长子序列

    单调递增最长子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4   输入 ...

  5. 【LCS,LIS】最长公共子序列、单调递增最长子序列

    单调递增最长子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4   输入 ...

  6. NYOJ17,单调递增最长子序列

    单调递增最长子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描写叙述 求一个字符串的最长递增子序列的长度 如:dabdbf最长递增子序列就是abdf.长度为4 输入 第 ...

  7. ny17 单调递增最长子序列

    单调递增最长子序列时间限制:3000 ms  |  内存限制:65535 KB难度:4 描述    求一个字符串的最长递增子序列的长度    如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...

  8. nyoj_17_单调递增最长子序列_201403121516

    单调递增最长子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4   输入 ...

  9. 单调递增最长子序列(南阳理工ACM)

    描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 第一行一个整数0<n<20,表示有n个字符串要处理随后的n行,每行有一个字符串,该字符串 ...

随机推荐

  1. JavaScript七宗罪和一些槽点

    当下JavaScript越来越流行,成为长期霸语言榜前三的语言.但是实际上JavaScript是一个很丑陋有很多槽点的语言,这就是为什么新出了那么多框架(从jQuery到Vue)以及海尔斯伯格大大推出 ...

  2. ‎Cocos2d-x 学习笔记(3.3) Layer

    1.简介 Layer直接继承了Node.Layer类似Ps里图层的概念,也可以理解成一块透明玻璃.Scene类似Ps里的一张图像,也可以理解成堆放玻璃的箱子. Layer能接收触摸事件.键盘事件.加速 ...

  3. C#版ASP.NET Web API使用示例

    为更好更快速的上手Webapi设计模式的接口开发,本文详细解释了在Web API接口的开发过程中,我们可能会碰到各种各样的问题总结了这篇,希望对大家有所帮助. 1:在接口定义中确定MVC的get或者P ...

  4. 数据结构4_java---顺序串,字符串匹配算法(BF算法,KMP算法)

    1.顺序串 实现的操作有: 构造串 判断空串 返回串的长度 返回位序号为i的字符 将串的长度扩充为newCapacity 返回从begin到end-1的子串 在第i个字符之前插入字串str 删除子串 ...

  5. Swoole 的微信扫码登录

    微信应用的便捷,扫码登录方式越来越被现在的应用所使用.它因为不用去记住密码,只要有微信号即可方便快捷登录.微信的开放平台原生就有支持扫码登录的功能,不过大部分人还是在用公众平台,所以扫码登录只能自行实 ...

  6. Java 中的 final、finally、finalize 有什么不同?

    Java 中 final.finally.finalize 有什么不同?这是在 Java 面试中经常问到的问题,他们究竟有什么不同呢? 这三个看起来很相似,其实他们的关系就像卡巴斯基和巴基斯坦一样有基 ...

  7. 简易数据分析 13 | Web Scraper 抓取二级页面

    这是简易数据分析系列的第 13 篇文章. 不知不觉,web scraper 系列教程我已经写了 10 篇了,这 10 篇内容,基本上覆盖了 Web Scraper 大部分功能.今天的内容算这个系列的最 ...

  8. Springboot 系列(十五)如何编写自己的 Springboot starter

    1. 前言 Springboot 中的自动配置确实方便,减少了我们开发上的复杂性,那么自动配置原理是什么呢?之前我也写过了一篇文章进行了分析. Springboot 系列(三)Spring Boot ...

  9. MySQL基础篇(2)数据类型

    MySQL提供了多种数据类型,主要包括数值型.字符串类型.日期和时间类型. 1.数值类型 整数类型:TINYINT(1字节).SMALLINT(2字节).MEDIUMINT(3字节).INT(INTE ...

  10. vue路由安装

    1.安装路由: vue ui cnpm install vue-router 2.使用,导入: 默认创建项目的时候就已经帮你写好了. import router from "vue-rout ...