SDU暑期集训排位(9)
SDU暑期集训排位(9)
G. Just Some Permutations
基础 DP 练习部分
- 定义 \(f(S)\),表示让 S 中的人全 happy 的方案数。
- \(dp[i][j]\) 表示,\(\sum_{|s|=j,s\subset\{1,...i\}} f(s)\)。
- 考虑从 \(dp[i][j]\) 开始的转移,可惜它转移不得,因为 \(i+1\) 个人,不知道自己能不能匹配成功。
- DP 状态记录 \(i+1,i\) 是否被匹配,大部分情况下 \(i+1\) 个人可以匹配 \(i,i+1,i+2\)
- Cornner Case 是 1 可以匹配 n,n 可以匹配 1,怎么办?
- DP 状态记录 \(1,n\) 是否被匹配。
- 于是 \(dp[i][j][\{i,i+1,1,n\} 匹配了哪些]\) 就是个很优雅的状态了,枚举第 \(i+1\) 个人匹配谁即可实现转移。
基础组合数学部分
- \(ans[i]\) 表示 \(\sum_{|s|=i} f(s)\)
- rdc 做完 基础 DP 练习后人解体了。
- \(g(x)\) 表示恰有 \(x\) 个 happy 的人的方案数。
- \(ans[i]=\sum_{j=x}^{n}g(j)\binom{j}{i}\)
基础的优化部分
- 比赛中 TLE 掉了。
- 需要每次都做 \(O(n*m*64)\) 的恐怖 DP?
- 考虑 \(n=200,m=200\),\(n=100,m=100\) 这个两组 Case 发现 \(dp[1][]\) 到 \(dp[98][]\) 值一样的。
- 不需要啊,对每组查询,更新 \(dp[i-1],dp[i]\) 即可。
D. Flood in Gridland
- 单纯形。rdc 比赛中调了一年,因为不知道默认有 \(x_i \geq 0\) 的条件,没文化。
- 调出来后 WA。
- sdcgvhgj 比赛后单纯形一发就过了。
SDU暑期集训排位(9)的更多相关文章
- SDU暑期集训排位(5)
SDU暑期集训排位(5) A. You're in the Army Now 题意 类似选志愿.每个人有 mark,有优先级从高到低的志愿. 做法 定睛一看,鲨鼻题.然后 WA. 为什么会 WA 呢? ...
- SDU暑期集训排位(4)
SDU暑期集训排位(4) C. Pick Your Team 题意 有 \(n\) 个人,每个人有能力值,A 和 B 轮流选人,A 先选,B 选人按照一种给出的优先级, A 可以随便选.A 想最大化己 ...
- SDU暑期集训排位(8)
A. A Giveaway 签到 B. Game of XOR 做法 dp[G][L][R]表示在倒数第G代,左边的数是L,右边的数是R,下面共有多少个0和1 区间和转换成两次前缀和和一次单点查询 利 ...
- SDU暑期集训排位(3)
B. Mysterious LCM 做法 保留 \(a_i|x\) 的元素,其它元素解体. \(a_i\) 的某个质因子的指数,要和 \(x\) 的这个质因子一样多,才有贡献,否则这个质因子它在划水啊 ...
- SDU暑期集训排位(2)
A. Art solved by sdcgvhgj 3min 签到 B. Biology solved by sdcgvhgj 85min 暴力 C - Computer Science solved ...
- 2014年CCNU-ACM暑期集训总结
2014年CCNU-ACM暑期集训总结 那个本期待已久的暑期集训居然就这种.溜走了.让自己有点措手不及.很多其它的是对自己的疑问.自己是否能在ACM这个领域有所成就.带着这个疑问,先对这个暑假做个总结 ...
- 8.10 正睿暑期集训营 Day7
目录 2018.8.10 正睿暑期集训营 Day7 总结 A 花园(思路) B 归来(Tarjan 拓扑) C 机场(凸函数 点分治) 考试代码 A B C 2018.8.10 正睿暑期集训营 Day ...
- 8.6 正睿暑期集训营 Day3
目录 2018.8.6 正睿暑期集训营 Day3 A 亵渎(DP) B 绕口令(KMP) C 最远点(LCT) 考试代码 A B C 2018.8.6 正睿暑期集训营 Day3 时间:5h(实际) 期 ...
- 8.9 正睿暑期集训营 Day6
目录 2018.8.9 正睿暑期集训营 Day6 A 萌新拆塔(状压DP) B 奇迹暖暖 C 风花雪月(DP) 考试代码 A B C 2018.8.9 正睿暑期集训营 Day6 时间:2.5h(实际) ...
随机推荐
- poj2909 欧拉素数筛选
刚刚学了一种新的素数筛选法,效率比原先的要高一些,据说当n趋近于无穷大时这个的时间复杂度趋近O(n).本人水平有限,无法证明. 这是道水题,贴代码出来重点是欧拉筛选法.我把原来普通的筛选法贴出来. / ...
- PHP后门***详解
说起php后门***我就心有愉季啊前不久一个站就因不小心给人注入了然后写入了小***这样结果大家知道的我就不说了下面我来给大家收集了各种php后门***做法大家可参考. php后门***对大家来说一点 ...
- Cassandra之Docker环境实践
Cassandra简介 Cassandra是一个开源分布式NoSQL数据库系统. 它最初由Facebook开发,用于储存收件箱等简单格式数据,集GoogleBigTable的数据模型与Amazon D ...
- Kibana对数据的可视化
基于上一篇的操作,我们已经获得了数据,接下来我们就要处理数据,因此选用了Kibana 先来介绍一下, Kibana是一个针对Elasticsearch的开源分析及可视化平台,用来搜索.查看交互存储在E ...
- 几大排序算法的Java实现(原创)
几大排序算法的Java实现 更新中... 注: 该类中附有随机生成[min, max)范围不重复整数的方法,如果各位看官对此方法有什么更好的建议,欢迎提出交流. 各个算法的思路都写在该类的注释中了,同 ...
- Tomcat源码分析 (二)----- Tomcat整体架构及组件
前言 Tomcat的前身为Catalina,而Catalina又是一个轻量级的Servlet容器.在美国,catalina是一个很美的小岛.所以Tomcat作者的寓意可能是想把Tomcat设计成一个优 ...
- 【游记】NOIP2019前传
声明 我的游记是一个完整的体系,如果没有阅读过往届文章,阅读可能会受到障碍. ~~~上一篇游记的传送门~~~ 前言 比完赛后,我沉浸在胜利中长达半个月,而后才清醒过来,意识到自己需要为NOIP2019 ...
- cmd命令行带参启动程序
cmd命令行带参启动程序 有一些程序不支持被直接启动,编写代码时,我们可以通过Process类来启动某个进程(某个软件),在不用代码调从而启动某个软件时,windows系统下,通常我们会用到cmd命令 ...
- 循环while和for
1.循环语句的基本操作 #while循环使用,其中break是用来结束当前循环的 count = 0 while True: print(count) count += 1 if count == 3 ...
- 昂贵的聘礼 POJ - 1062
题目链接:https://vjudge.net/problem/POJ-1062 如图,我们可以把交换的情况,抽象为一个有向图, 先抛去等级限制,那么就是一个最短路,从①出发,到达其他点的最短路中 最 ...