SDU暑期集训排位(9)

G. Just Some Permutations

基础 DP 练习部分

  • 定义 \(f(S)\),表示让 S 中的人全 happy 的方案数。
  • \(dp[i][j]\) 表示,\(\sum_{|s|=j,s\subset\{1,...i\}} f(s)\)。
  • 考虑从 \(dp[i][j]\) 开始的转移,可惜它转移不得,因为 \(i+1\) 个人,不知道自己能不能匹配成功。
  • DP 状态记录 \(i+1,i\) 是否被匹配,大部分情况下 \(i+1\) 个人可以匹配 \(i,i+1,i+2\)
  • Cornner Case 是 1 可以匹配 n,n 可以匹配 1,怎么办?
  • DP 状态记录 \(1,n\) 是否被匹配。
  • 于是 \(dp[i][j][\{i,i+1,1,n\} 匹配了哪些]\) 就是个很优雅的状态了,枚举第 \(i+1\) 个人匹配谁即可实现转移。

基础组合数学部分

  • \(ans[i]\) 表示 \(\sum_{|s|=i} f(s)\)
  • rdc 做完 基础 DP 练习后人解体了。
  • \(g(x)\) 表示恰有 \(x\) 个 happy 的人的方案数。
  • \(ans[i]=\sum_{j=x}^{n}g(j)\binom{j}{i}\)

基础的优化部分

  • 比赛中 TLE 掉了。
  • 需要每次都做 \(O(n*m*64)\) 的恐怖 DP?
  • 考虑 \(n=200,m=200\),\(n=100,m=100\) 这个两组 Case 发现 \(dp[1][]\) 到 \(dp[98][]\) 值一样的。
  • 不需要啊,对每组查询,更新 \(dp[i-1],dp[i]\) 即可。

D. Flood in Gridland

  • 单纯形。rdc 比赛中调了一年,因为不知道默认有 \(x_i \geq 0\) 的条件,没文化。
  • 调出来后 WA。
  • sdcgvhgj 比赛后单纯形一发就过了。

SDU暑期集训排位(9)的更多相关文章

  1. SDU暑期集训排位(5)

    SDU暑期集训排位(5) A. You're in the Army Now 题意 类似选志愿.每个人有 mark,有优先级从高到低的志愿. 做法 定睛一看,鲨鼻题.然后 WA. 为什么会 WA 呢? ...

  2. SDU暑期集训排位(4)

    SDU暑期集训排位(4) C. Pick Your Team 题意 有 \(n\) 个人,每个人有能力值,A 和 B 轮流选人,A 先选,B 选人按照一种给出的优先级, A 可以随便选.A 想最大化己 ...

  3. SDU暑期集训排位(8)

    A. A Giveaway 签到 B. Game of XOR 做法 dp[G][L][R]表示在倒数第G代,左边的数是L,右边的数是R,下面共有多少个0和1 区间和转换成两次前缀和和一次单点查询 利 ...

  4. SDU暑期集训排位(3)

    B. Mysterious LCM 做法 保留 \(a_i|x\) 的元素,其它元素解体. \(a_i\) 的某个质因子的指数,要和 \(x\) 的这个质因子一样多,才有贡献,否则这个质因子它在划水啊 ...

  5. SDU暑期集训排位(2)

    A. Art solved by sdcgvhgj 3min 签到 B. Biology solved by sdcgvhgj 85min 暴力 C - Computer Science solved ...

  6. 2014年CCNU-ACM暑期集训总结

    2014年CCNU-ACM暑期集训总结 那个本期待已久的暑期集训居然就这种.溜走了.让自己有点措手不及.很多其它的是对自己的疑问.自己是否能在ACM这个领域有所成就.带着这个疑问,先对这个暑假做个总结 ...

  7. 8.10 正睿暑期集训营 Day7

    目录 2018.8.10 正睿暑期集训营 Day7 总结 A 花园(思路) B 归来(Tarjan 拓扑) C 机场(凸函数 点分治) 考试代码 A B C 2018.8.10 正睿暑期集训营 Day ...

  8. 8.6 正睿暑期集训营 Day3

    目录 2018.8.6 正睿暑期集训营 Day3 A 亵渎(DP) B 绕口令(KMP) C 最远点(LCT) 考试代码 A B C 2018.8.6 正睿暑期集训营 Day3 时间:5h(实际) 期 ...

  9. 8.9 正睿暑期集训营 Day6

    目录 2018.8.9 正睿暑期集训营 Day6 A 萌新拆塔(状压DP) B 奇迹暖暖 C 风花雪月(DP) 考试代码 A B C 2018.8.9 正睿暑期集训营 Day6 时间:2.5h(实际) ...

随机推荐

  1. JWT token 跨域认证

    JSON Web Token(缩写 JWT),是目前最流行的跨域认证解决方案. session登录认证方案:用户从客户端传递用户名.密码等信息,服务端认证后将信息存储在session中,将sessio ...

  2. x32下PsSetLoadImageNotifyRoutine的逆向

    一丶简介 纯属兴趣爱好.特来逆向玩玩. PsSetLoadImageNotifyRoutine 是内核中用来监控模块加载.操作系统给我们提供的回调. 我们只需要填写对应的回调函数原型即可进行加监控. ...

  3. 改 Anaconda Jupyter Notebook 开发文件保存目录

    1.打开cmd,输入命令找到配置文件路径 jupyter notebook --generate-config 2.打开 jupyter_notebook_config.py 修改配置 c.Noteb ...

  4. pod指定node运行

    1.给node打上label kubectl label nodes cn-hongkong.i-j6c5pm0b59y9kaos565o apptype=monitoring 2.查看结果kubec ...

  5. A solution to the never shortened to-do list

    I once told my younger sister my learning system, and the basic five doctrines of my methodology. Bu ...

  6. Java基础的一些知识点(一):接口interface

    1.接口的含义 接口可以理解成统一的协议, 而接口中的属性也属于协议中的内容.但是接口的属性都是公共的,静态的,最终的. 接口的成员特点: 1.成员变量只能是常量,默认修饰符 public stati ...

  7. 【原创实践】U大师启动安装windows XP

    1:使用U大师3.0版制作启动U盘,拷贝windows xp或者win7的原版安装iso(zh-hans_windows_xp_professional_with_service_pack_3_x86 ...

  8. 关于int的范围以及溢出问题

    最近在练一些算法题目的时候恰巧碰到了几道关于int范围与溢出相关的问题,于是就整理一下. 1.原码.补码 在计算机中数值都是用补码表示和存储的(正数补码与原码一致,负数补码是原码符号位不变,其余位取反 ...

  9. asp.net core 从单机到集群

    asp.net core 从单机到集群 Intro 这篇文章主要以我的活动室预约的项目作为示例,看一下一个 asp.net core 应用从单机应用到分布式应用需要做什么. 示例项目 活动室预约提供了 ...

  10. 探究光线追踪技术及UE4的实现

    目录 一.光线追踪概述 1.1 光线追踪是什么 1.2 光线追踪的特点 1.3 光线追踪的历史 1.4 光线追踪的应用 二.光线追踪的原理 2.1 光线追踪的物理原理 2.2 光线追踪算法 2.3 R ...