转自:http://www.pianshen.com/article/428276673/;jsessionid=D90FC6B215155680E0B89A6D060892D4

本文基于天嵌E9V3开发板,详解设备树的规则和用法。

一、基本概念

DTS即Device Tree Source,是一个文本形式的文件,用于描述硬件信息,包括CPU的数量和类别、内存基地址和大小、中断控制器、总线和桥、外设、时钟和GPIO控制器等。
DTB即Device Tree Blob,是一个二进制形式的文件,由linux内核识别,为其中的设备匹配合适的驱动程序。
DTC即Device Tree Compiler,将适合人类阅读和编辑的DTS文件编译成适合机器处理的DTB文件。
编译内核的时候会同时使用DTC 将DTS编译成DTB,天嵌E9V3使用的DTS文件e9v3-sabresd.dts位于/arch/arm/boot/dts目录下。

如上图所示,bootloader读取dtb文件放入RAM中,并将存放地址告诉linux内核,内核启动以后从该地址读取相应的设备信息,匹配平台和设备驱动。

二、E9V3设备树总览

linux中的一个dts文件对应一个machine, 不同的machine可能使用相同的SOC,只是对外设的使用不同,这些不同的dts文件势必包含很多相同的内容,为了简化,可以把公用的部分提炼为dtsi文件。
e9v3-sabresd.dts包含dtsi的结构如下:

列出各个文件中的节点,如下图所示,是不是有点像有很多分支的树?

三、设备树编写规则

Device Tree的编写规则可参考文档<<devicetree-specification-v0.2.pdf>>, 以下简称spec,下载链接为:
https://github.com/devicetree-org/devicetree-specification/releases/tag/v0.2

设备树由一个一个的节点组成,每个设备树有且仅有一个根节点,节点可以包含子节点。

1、节点名称
基本的节点名格式如下:
node-name@unit-address
其中node-name由字母、数字和一些特殊字符构成的字符串,长度不超过31个字符,可自定义,但为了可读性,spec中规定了一些约定成熟的名称,比如cpus, memory, bus,clock等。
unit-address为节点的地址,通常为寄存器的首地址,比如imx6q datasheet中uart1的寄存器地址范围为0202_0000~0202_3FFF,在定义uart1节点时,对应的unit-address为0202_0000:
uart1: serial@02020000 {

}
有些节点没有对应的寄存器,则unit-address可省略,节点名只由node-name组成,比如cpus:
cpus {

}
根节点的名称比较特殊,由一个斜杠组成:
/{

}

2、label标签

三、设备与驱动的匹配

linux内核启动以后,先解析并注册dts中的设备,然后再注册驱动,比较驱动中的compatible 属性和设备中的compatible 属性,或者比较两者的name属性,如果一致则匹配成功。
1、解析dtb
在start_kernel() --> setup_arch(0 --> unflatten_device_tree() --> __unflatten_device_tree()函数中扫描dtb,并转换成节点是device_node的树状结构。
注:代码基于linux4.1.15内核(下同)

static void __unflatten_device_tree()
{
...
/* First pass, scan for size */
start = 0;
size = (unsigned long)unflatten_dt_node(blob, NULL, &start, NULL, NULL, 0, true);
size = ALIGN(size, 4);
...
/* Second pass, do actual unflattening */
start = 0;
unflatten_dt_node(blob, mem, &start, NULL, mynodes, 0, false);
...
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

2. 注册dts设备

imx6q_init_machine() --> of_platform_populate()。
在of_platform_populate()中循环扫描根节点下的各节点:

int of_platform_populate()
{
...
for_each_child_of_node(root, child) {
rc = of_platform_bus_create(child, matches, lookup, parent, true);
}
...
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
static int of_platform_bus_create()
{
...
/* Make sure it has a compatible property */
if (strict && (!of_get_property(bus, "compatible", NULL))) {
pr_debug("%s() - skipping %s, no compatible prop\n",
__func__, bus->full_name);
return 0;
} auxdata = of_dev_lookup(lookup, bus);
if (auxdata) {
bus_id = auxdata->name;
platform_data = auxdata->platform_data;
}
...
dev = of_platform_device_create_pdata(bus, bus_id, platform_data, parent);
if (!dev || !of_match_node(matches, bus))
return 0;
如果节点有子节点,则递归调用of_platform_bus_create()扫描节点的子节点:
for_each_child_of_node(bus, child) {
pr_debug(" create child: %s\n", child->full_name);
rc = of_platform_bus_create(child, matches, lookup, &dev->dev, strict);
if (rc) {
of_node_put(child);
break;
}
}
of_node_set_flag(bus, OF_POPULATED_BUS);
return rc;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

最终调用of_platform_device_create_pdata() —> of_device_add() 注册设备并添加到对应的链表中。

3、注册驱动
Linux注册驱动的函数为driver_register(),或者其包装函数如platform_driver_register(),而driver_register()或者其包装函数一般在驱动的初始化函数xxx_init()中调用。
驱动初始化函数xxx_init()被调用的路劲为:
start_kernel() --> rest_init() --> Kernel_init() --> kernel_init_freeable() --> do_basic_setup() --> do_initcalls:

简而言之,在start_kernel()中调用driver_register()注册驱动程序。

4、匹配设备
追踪driver_register()函数,driver_register() --> bus_add_driver() --> driver_attach() --> __driver_attach:

static int __driver_attach(struct device *dev, void *data)
{
struct device_driver *drv = data;
if (!driver_match_device(drv, dev))
return 0; if (dev->parent) /* Needed for USB */
device_lock(dev->parent);
device_lock(dev);
if (!dev->driver)
driver_probe_device(drv, dev);
device_unlock(dev);
if (dev->parent)
device_unlock(dev->parent);
return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

driver_match_device()中寻找匹配的设备,如果匹配成功则执行驱动的probe函数。
driver_match_device()最终会调用平台的匹配函数platform_match():

static int platform_match(struct device *dev, struct device_driver *drv)
{
struct platform_device *pdev = to_platform_device(dev);
struct platform_driver *pdrv = to_platform_driver(drv); /* When driver_override is set, only bind to the matching driver */
if (pdev->driver_override)
return !strcmp(pdev->driver_override, drv->name); /* Attempt an OF style match first */
if (of_driver_match_device(dev, drv))
return 1; /* Then try ACPI style match */
if (acpi_driver_match_device(dev, drv))
return 1; /* Then try to match against the id table */
if (pdrv->id_table)
return platform_match_id(pdrv->id_table, pdev) != NULL; /* fall-back to driver name match */
return (strcmp(pdev->name, drv->name) == 0);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

从代码中可以看出, platform_match()会采用多种方法进行匹配:

  1. of_driver_match_device将根据驱动程序of_match_table中的compatible属性,与设备中的compatible属性进行比对。
  2. 其次调用acpi_driver_match_device()进行匹配。
  3. 如果前2种方法都没有匹配的,最后比对设备和驱动的name字符串是否一致。

以GPIO-key为例,设备和驱动匹配示意图如下:

版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。

Linux 设备树详解【转】的更多相关文章

  1. Linux DTS(Device Tree Source)设备树详解之二(dts匹配及发挥作用的流程篇)【转】

    转自:https://blog.csdn.net/radianceblau/article/details/74722395 版权声明:本文为博主原创文章,未经博主允许不得转载.如本文对您有帮助,欢迎 ...

  2. Linux dts 设备树详解(二) 动手编写设备树dts

    Linux dts 设备树详解(一) 基础知识 Linux dts 设备树详解(二) 动手编写设备树dts 文章目录 前言 硬件结构 设备树dts文件 前言 在简单了解概念之后,我们可以开始尝试写一个 ...

  3. Linux dts 设备树详解(一) 基础知识

    Linux dts 设备树详解(一) 基础知识 Linux dts 设备树详解(二) 动手编写设备树dts 文章目录 1 前言 2 概念 2.1 什么是设备树 dts(device tree)? 2. ...

  4. Linux设备驱动详解 宋宝华 硬件基础

    处理器 存储器 接口与总线 I2C时序 SPI总线时序 以太网

  5. Linux设备树语法详解

    概念 Linux内核从3.x开始引入设备树的概念,用于实现驱动代码与设备信息相分离.在设备树出现以前,所有关于设备的具体信息都要写在驱动里,一旦外围设备变化,驱动代码就要重写.引入了设备树之后,驱动代 ...

  6. Linux设备树语法详解【转】

    转自:http://www.cnblogs.com/xiaojiang1025/p/6131381.html 概念 Linux内核从3.x开始引入设备树的概念,用于实现驱动代码与设备信息相分离.在设备 ...

  7. 【转】Linux 网络工具详解之 ip tuntap 和 tunctl 创建 tap/tun 设备

    原文:https://www.cnblogs.com/bakari/p/10449664.html -------------------------------------------------- ...

  8. Linux常用命令详解—基于CentOS7

    ## Linux 目录- /:根目录,一般只存放目录,不存放文件- /bin -> /usr/bin:可执行二进制文件的目录,也是常用命令目录,如常用的命令 ls.cat.mv 等- /boot ...

  9. Linux常用命令详解下

    Linux常用命令详解 目录 一.Linux常用命令 1.1.查看及切换目录(pwd.cd.ls.du) 1.2.创建目录和文件(mkdir.touch.ln) 1.3.复制.删除.移动目录和文件(c ...

随机推荐

  1. 【转载】作为Android开发者,你真的熟悉Activity吗?

    学过android的人都知道,activity是最常用的四大组件之一,但你真的了解透彻activity了吗?接下来,本人将从activity的正常和异常生命周期.启动模式.IntentFilter匹配 ...

  2. 个人项目开源之c++基于epoll实现高并发游戏盒子(服务端+客户端)源代码

    正在陆续开源自己的一些项目 此为c++实现高并发的游戏盒子,平台问题需要迁移重构,所以有一些遗留问题,客户端异常断开没有处理,会导致服务器崩溃,还有基于快写代码编程平台实现的小程序切换,线程读写缓存没 ...

  3. Servlet 使用介绍(2)

    说明 本篇由于介绍Servlet容器回传请求方法service(ServletRequest req, ServletResponse res);传入参数用户请求参数request和请求返回参数res ...

  4. ORACLE关于日志文件基本操作

    1.查询系统使用的是哪一组日志文件:SELECT * FROM V$LOG; 2.查询正在使用的组所对应的日志文件:SELECT * FROM V$LOGFILE; 3.强制日志切换:ALTER SY ...

  5. SPA项目开发之登录

    前端 首先安装开发模板 npm install element-ui -S npm install axios -S npm install qs -S npm install vue-axios - ...

  6. 「MacOS」将网站转换为应用程序,只需一个Unite

    unite mac有着非常强大的功能,能够轻松的将网站转换为macOS上的应用程序,除了现代化的网页浏览功能以外,Unite for Mac下载还包括特定于macOS的功能,通知,TouchBar支持 ...

  7. Day7 - Python基础7 面向对象

    本节内容: 1:概述 2:类.对象和方法的创建 3:面向对象三大特性,封装.继承和多态. 4:面向对象中高级篇:类成员:字段.方法.属性 5:类成员的修饰符 6:类的特殊成员 1.概述 面向过程:根据 ...

  8. python(leetcode)498. 对角线遍历

    这题难度中等,记录下思路 第一个会超时, 第二个:思想是按斜对角线行进行右下左上交替遍历, def traverse(matrix): n=len(matrix)-1 m=len(matrix[0]) ...

  9. 洛谷 SP14932 LCA - Lowest Common Ancestor

    洛谷 SP14932 LCA - Lowest Common Ancestor 洛谷评测传送门 题目描述 A tree is an undirected graph in which any two ...

  10. iOS: 本地通知的前后变化(iOS10)

    一.介绍  通知和推送是应用程序中很重要的组成部分.本地通知可以为应用程序注册一些定时任务,例如闹钟.定时提醒等.远程推送则更强大,提供了一种通过服务端主动推送消息到客户端的方式,服务端可以更加灵活地 ...