Problem Description
I used to think I could be anything, but now I know that I couldn't do anything. So I started traveling.

The
nation looks like a connected bidirectional graph, and I am randomly
walking on it. It means when I am at node i, I will travel to an
adjacent node with the same probability in the next step. I will pick up
the start node randomly (each node in the graph has the same
probability.), and travel for d steps, noting that I may go through some
nodes multiple times.

If I miss some sights at a node, it will
make me unhappy. So I wonder for each node, what is the probability that
my path doesn't contain it.

 
Input
The first line contains an integer T, denoting the number of the test cases.

For
each test case, the first line contains 3 integers n, m and d, denoting
the number of vertices, the number of edges and the number of steps
respectively. Then m lines follows, each containing two integers a and
b, denoting there is an edge between node a and node b.

T<=20,
n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no
self-loops or multiple edges in the graph, and the graph is connected.
The nodes are indexed from 1.

 
Output
For each test cases, output n lines, the i-th line containing the desired probability for the i-th node.

Your answer will be accepted if its absolute error doesn't exceed 1e-5.

 
Sample Input
2
5 10 100
1 2
2 3
3 4
4 5
1 5
2 4
3 5
2 5
1 4
1 3
10 10 10
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
4 9
 
Sample Output
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.6993317967
0.5864284952
0.4440860821
0.2275896991
0.4294074591
0.4851048742
0.4896018842
0.4525044250
0.3406567483
0.6421630037
 
Source
 
 

 
 
题意:n个点,m条边的无向图,你随机的从一个点开始,走k步,问你对于每一个点,它不被经过的概率是多少。
我们这样考虑,一个点不被经过的概率就是1-这个点经过的概率,所以就设f[i][j]为已经走了i步, 不经过x点,走到第j个点的概率。
$\large f[i+1][to]+=\frac{1}{deg[j]}f[i][j]$
于是对于每一个点我们都跑一遍dp。
然后每个点x的答案就是1-∑dp[i][x].
然后 就水过去了
 
 

 
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
#define gc getchar()
inline int read(){
int res=;char ch=gc;
while(!isdigit(ch))ch=gc;
while(isdigit(ch)){res=(res<<)+(res<<)+(ch^);ch=gc;}
return res;
}
#undef gc int T, n, m, K;
struct edge{
int nxt, to;
}ed[];
int head[], cnt;
inline void add(int x, int y)
{
ed[++cnt] = (edge){head[x], y};
head[x] = cnt;
}
int deg[];
double f[][]; inline double DP(int cur)
{
memset(f, , sizeof f);
double res = ;
for (int i = ; i <= n ; i ++) f[][i] = (double)(1.0/(double)n);
for (int j = ; j <= K ; j ++)
{
for (int x = ; x <= n ; x ++)
{
if (x == cur) continue;
for (int i = head[x] ; i ; i = ed[i].nxt)
{
int to = ed[i].to;
f[j+][to] += (double)(f[j][x] / (double)deg[x]);
}
}
res += f[j][cur];
}
return res;
} int main()
{
T = read();
while(T--)
{
memset(head, , sizeof head);
memset(deg, , sizeof deg);
cnt = ;
n = read(), m = read(), K = read();
for (int i = ; i <= m ; i ++)
{
int x = read(), y = read();
add(x, y), add(y, x);
deg[x]++, deg[y]++;
}
for (int i = ; i <= n ; i ++)
printf("%.10lf\n", - DP(i));
}
return ;
}

[HDU5001]Walk的更多相关文章

  1. hdu5001 Walk 概率DP

    I used to think I could be anything, but now I know that I couldn't do anything. So I started travel ...

  2. HDU-5001 Walk (概率DP)

    Problem Description I used to think I could be anything, but now I know that I couldn't do anything. ...

  3. python os.walk()

    os.walk()返回三个参数:os.walk(dirpath,dirnames,filenames) for dirpath,dirnames,filenames in os.walk(): 返回d ...

  4. LYDSY模拟赛day1 Walk

    /* 依旧考虑新增 2^20 个点. i 只需要向 i 去掉某一位的 1 的点连边. 这样一来图的边数就被压缩到了 20 · 2^20 + 2n + m,然后 BFS 求出 1 到每个点的最短路即可. ...

  5. How Google TestsSoftware - Crawl, walk, run.

    One of the key ways Google achievesgood results with fewer testers than many companies is that we ra ...

  6. poj[3093]Margaritas On River Walk

    Description One of the more popular activities in San Antonio is to enjoy margaritas in the park alo ...

  7. os.walk()

    os.walk() 方法用于通过在目录树种游走输出在目录中的文件名,向上或者向下. walk()方法语法格式如下: os.walk(top[, topdown=True[, onerror=None[ ...

  8. 精品素材:WALK & RIDE 单页网站模板下载

    今天,很高兴能向大家分享一个响应式的,简约风格的 HTML5 单页网站模板.Walk & Ride 这款单页网站模板是现代风格的网页模板,简洁干净,像素完美,特别适合用于推广移动 APP 应用 ...

  9. 股票投资组合-前进优化方法(Walk forward optimization)

    code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && docu ...

随机推荐

  1. soap get/post请求

    pom.xml依赖: <dependency> <groupId>org.apache.httpcomponents</groupId> <artifactI ...

  2. IO流的工具类

    1.需要先导入jar包: FilenameUtils import org.apache.commons.io.FilenameUtils; public class FilenameUtilesDe ...

  3. iOS 13 正式发布,来看看有哪些 API 变动

    iOS 13 已正式发布,网上对其用户体验上的新特性的描述也很多.对于开发来说,需要关注的另一方面是新系统在 API 层面做了哪些改动,从而会对我们现有的代码产生什么影响. 在这里,我们基于 iOS ...

  4. 面试官: 聊一聊Babel

    点击关注本公众号获取文档最新更新,并可以领取配套于本指南的 <前端面试手册> 以及最标准的简历模板. 前言 Babel 是现代 JavaScript 语法转换器,几乎在任何现代前端项目中都 ...

  5. 【Java基础】关于枚举类你可能不知道的事

    目录 谈谈枚举 1. 枚举类的定义 2. 枚举类的底层实现 3. 枚举类的序列化实现 4. 用枚举实现单列 5. 枚举实例的创建过程是线程安全的 谈谈枚举 如果一个类的对象个数是有限的而且是不变的,我 ...

  6. linux下安装node.js时npm无法使用

    安装node.js 10.15.1版本时,安装完在node的安装目录下执行./node -v查看node版本,成功则表示node已安装成功 [root@localhost bin]# ./node - ...

  7. 彻底关闭Windows10的更新

    Windows10的自动更新太恶心,关闭之后总能死灰复燃,更新偶尔占用大量的CPU内存,非常影响使用.而网上大多数都是关闭服务之类的方法,但是关闭之后没过多久又会重新自动启动,如何彻底摆脱wiondo ...

  8. 在vue中使用[provide/inject]实现页面reload

    在vue中实现页面刷新有不同的方法: 如:this.$router.go(0),location.reload()等,但是或多或少会存在问题,如页面会一闪等 所以建议使用[provide/inject ...

  9. Github 入门1 (下载git , 连接本地库与github仓库)

    /* 本篇建立在以注册GitHub账号的前提下*/ (1)  下载 git  https://www.git-scm.com // win10 可以直接红色箭头标识的 Download 2.22.0 ...

  10. System.exit退出程序

    方法源码: /** * Terminates the currently running Java Virtual Machine. The * argument serves as a status ...