Problem Description
I used to think I could be anything, but now I know that I couldn't do anything. So I started traveling.

The
nation looks like a connected bidirectional graph, and I am randomly
walking on it. It means when I am at node i, I will travel to an
adjacent node with the same probability in the next step. I will pick up
the start node randomly (each node in the graph has the same
probability.), and travel for d steps, noting that I may go through some
nodes multiple times.

If I miss some sights at a node, it will
make me unhappy. So I wonder for each node, what is the probability that
my path doesn't contain it.

 
Input
The first line contains an integer T, denoting the number of the test cases.

For
each test case, the first line contains 3 integers n, m and d, denoting
the number of vertices, the number of edges and the number of steps
respectively. Then m lines follows, each containing two integers a and
b, denoting there is an edge between node a and node b.

T<=20,
n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no
self-loops or multiple edges in the graph, and the graph is connected.
The nodes are indexed from 1.

 
Output
For each test cases, output n lines, the i-th line containing the desired probability for the i-th node.

Your answer will be accepted if its absolute error doesn't exceed 1e-5.

 
Sample Input
2
5 10 100
1 2
2 3
3 4
4 5
1 5
2 4
3 5
2 5
1 4
1 3
10 10 10
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
4 9
 
Sample Output
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.6993317967
0.5864284952
0.4440860821
0.2275896991
0.4294074591
0.4851048742
0.4896018842
0.4525044250
0.3406567483
0.6421630037
 
Source
 
 

 
 
题意:n个点,m条边的无向图,你随机的从一个点开始,走k步,问你对于每一个点,它不被经过的概率是多少。
我们这样考虑,一个点不被经过的概率就是1-这个点经过的概率,所以就设f[i][j]为已经走了i步, 不经过x点,走到第j个点的概率。
$\large f[i+1][to]+=\frac{1}{deg[j]}f[i][j]$
于是对于每一个点我们都跑一遍dp。
然后每个点x的答案就是1-∑dp[i][x].
然后 就水过去了
 
 

 
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
#define gc getchar()
inline int read(){
int res=;char ch=gc;
while(!isdigit(ch))ch=gc;
while(isdigit(ch)){res=(res<<)+(res<<)+(ch^);ch=gc;}
return res;
}
#undef gc int T, n, m, K;
struct edge{
int nxt, to;
}ed[];
int head[], cnt;
inline void add(int x, int y)
{
ed[++cnt] = (edge){head[x], y};
head[x] = cnt;
}
int deg[];
double f[][]; inline double DP(int cur)
{
memset(f, , sizeof f);
double res = ;
for (int i = ; i <= n ; i ++) f[][i] = (double)(1.0/(double)n);
for (int j = ; j <= K ; j ++)
{
for (int x = ; x <= n ; x ++)
{
if (x == cur) continue;
for (int i = head[x] ; i ; i = ed[i].nxt)
{
int to = ed[i].to;
f[j+][to] += (double)(f[j][x] / (double)deg[x]);
}
}
res += f[j][cur];
}
return res;
} int main()
{
T = read();
while(T--)
{
memset(head, , sizeof head);
memset(deg, , sizeof deg);
cnt = ;
n = read(), m = read(), K = read();
for (int i = ; i <= m ; i ++)
{
int x = read(), y = read();
add(x, y), add(y, x);
deg[x]++, deg[y]++;
}
for (int i = ; i <= n ; i ++)
printf("%.10lf\n", - DP(i));
}
return ;
}

[HDU5001]Walk的更多相关文章

  1. hdu5001 Walk 概率DP

    I used to think I could be anything, but now I know that I couldn't do anything. So I started travel ...

  2. HDU-5001 Walk (概率DP)

    Problem Description I used to think I could be anything, but now I know that I couldn't do anything. ...

  3. python os.walk()

    os.walk()返回三个参数:os.walk(dirpath,dirnames,filenames) for dirpath,dirnames,filenames in os.walk(): 返回d ...

  4. LYDSY模拟赛day1 Walk

    /* 依旧考虑新增 2^20 个点. i 只需要向 i 去掉某一位的 1 的点连边. 这样一来图的边数就被压缩到了 20 · 2^20 + 2n + m,然后 BFS 求出 1 到每个点的最短路即可. ...

  5. How Google TestsSoftware - Crawl, walk, run.

    One of the key ways Google achievesgood results with fewer testers than many companies is that we ra ...

  6. poj[3093]Margaritas On River Walk

    Description One of the more popular activities in San Antonio is to enjoy margaritas in the park alo ...

  7. os.walk()

    os.walk() 方法用于通过在目录树种游走输出在目录中的文件名,向上或者向下. walk()方法语法格式如下: os.walk(top[, topdown=True[, onerror=None[ ...

  8. 精品素材:WALK & RIDE 单页网站模板下载

    今天,很高兴能向大家分享一个响应式的,简约风格的 HTML5 单页网站模板.Walk & Ride 这款单页网站模板是现代风格的网页模板,简洁干净,像素完美,特别适合用于推广移动 APP 应用 ...

  9. 股票投资组合-前进优化方法(Walk forward optimization)

    code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && docu ...

随机推荐

  1. Centos7上配置nginx的负载均衡

    前言 在配置nginx负载均衡前.我们需要明白几个名词的概念 注: 如果不小心忘了tomcat和nginx的启动,关闭命令,可参考写在文章最后的命令 一 重要的概念理解 1 什么是nginx呢? Ng ...

  2. ansible-playbook流程控制-loops循环使用

    1. ansible-playbook流程控制-loops循环使用    有时你想要多次重复任务.在计算机编程中,这称为循环.common ansible循环包括使用文件模块更改多个文件和/或目录的所 ...

  3. 大白话讲解 BitSet

    原理 BitSet是位操作的对象,值只有0或1即false和true,内部维护了一个long数组,初始只有一个long,所以BitSet最小的size是64,当随着存储的元素越来越多,BitSet内部 ...

  4. 利用Jenkins实现项目自动化部署

    1.安装Jenkins,参考上一篇博客:安装Jenkins 安装Java 安装tomcat 安装maven 2.全局工具配置,填写好后点击save 3.安装git plugin插件

  5. C++基础之泛型算法

    标准库并未给每个容器添加大量功能,因此,通过大量泛型算法,来弥补.这些算法大多数独立于任何特定的容器,且是通用的,可用于不同类型的容器和不同的元素. 迭代器使得算法不依赖容器,但是算法依赖于元素的类型 ...

  6. C语言入门-数据类型

    一.C语言的类型 整数:char.short.int.long.longlong 浮点型:float.double.long double 逻辑:bool 指针 自定义类型 类型有何不同 类型名称:i ...

  7. SSH Config 管理多主机

    使用 一般我们使用ssh连接远程主机的时候,使用命令是: ssh root@ip ssh –i [identity-file] -p [port] user@hostname 但是如果ip地址过多,其 ...

  8. Hadoop点滴-HDFS命令行接口

    1.-help[cmd] 显示命令的帮助信息 ./hdfs dfs -help ls1 2.-ls(r) 显示当前目录下的所有文件 -R层层循出文件夹 ./hdfs dfs -ls /log/map ...

  9. Eureka实战-1【Eureka Server在线扩容】

    1.准备工作 PS:为了偷懒,每个pom文件都要依赖的公共依赖配置放在下面: <parent> <groupId>org.springframework.boot</gr ...

  10. python3连接MySQL实现增删改查

    PyMySQL 安装 在使用 PyMySQL 之前,我们需要确保 PyMySQL 已安装. PyMySQL 下载地址:https://github.com/PyMySQL/PyMySQL. 如果还未安 ...