本节主要用于机器学习入门,介绍两个简单的分类模型:

决策树和随机森林

不涉及内部原理,仅仅介绍基础的调用方法

1. How Models Work

以简单的决策树为例

This step of capturing patterns from data is called fitting or training the model

The data used to train the data is called the trainning data

After the model has been fit, you can apply it to new data to predict prices of additional homes

2.Basic Data Exploration

使用pandas中的describle()来探究数据:

    melbourne_file_path = '../input/melbourne-housing-snapshot/melb_data.csv'

    melbourne_data      =  pd.read_csv(melbourne_file_path)

    melbourne.describe()

    output:

注:数值含义

count:                     非缺失值的数量

mean:                                           平均值

std:                                              标准偏差,它度量值在数值上的分布情况

min、25%、50%、75%、max:        将每一列按照从lowest到highest排序,最小值是min, 1/4位置上,大于25%而小于50%是25%

3.Your First Machine Learning Model

  • Selecting Data for Modeling

 

  import  pandas as pd 

  melbourne_file_path     =         ' ../input/melbourne-housing-snapshot/melb_data.csv'

  melbourne_data          =          pd.read_csv(melbourne_file_path

  melbourne_data.columns

  • Selecting The Prediction Target

方法:使用dot-notation来挑选prediction target

  y = melbourne_data.Price

  • Choosing "Features"

  

  melbourne_features = ['Rooms', 'Bathroom', 'Landsize', 'Lattitude', 'Longtitude']

  X = melbourne_data[melbourne_features]

查看数据是否加载正确:

  

  X.head()

探究数据基本特性:

  X.describe()

  • Building Your Model

我们使用scikit-learn来创造模型,scikit-learn教程如下:

具体的原理可以根据需要自己探究

https://scikit-learn.org/stable/supervised_learning.html#supervised-learning

构建模型步骤:

    •   Define:

         What type of model will it be? A decision tree? Some other type of model? Some other parameters of the model type are specified too.

    •   Fit:

Capture patterns from provided data. This is the heart of modeling

    •   Predict:

        Just what it sounds like

    •   Evaluate:

         Determine how accurate the model's predictions are


实现:


    from sklearn.tree import DecisionTreeRegressor

    melbourne_mode = DecisionTreeRegressor(random_state=1)

    melbourne_mode.fit(X , y)

打印出开始几行:

  

    print (X.head())

预测后的价格如下:

    print (melbourne_mode.predict(X.head())

4.Model Validation

由于预测的价格和真实的价格会有差距,而差距多少,我们需要衡量

使用Mean Absolute Error

    error= actual-predicted

在实际过程中,我们要将数据分成两份,一份用于训练,叫做training data, 一份用于验证叫validataion data

    from sklearn.model_selection import train_test_split

    train_X, val_X,  train_y, val_y =     train_test_split(X, y, random_state=0)

    melbourne_model               =      DecisionTreeRegressor()

    melbourne_model.fit(train_X, train_y)

    val_predictions                  =      melbourne_model.predict(val_X)

    print(mean_absolute_error(val_y, val_predictions))

5.Underfitting and Overfitting

  • overfitting:     A model matches the data almost perfectly, but does poorly in validation and other new data.
  • underfitting:   When a model fails to capture important distinctions and patterns in the data, so it performs poorly even in training data.

The more leaves we allow the model to make, the more we move from the underfitting area in the above graph to overfitting area.

  from sklearn.metrics import mean_absolute_error

  from sklearn.tree import DecsionTreeRegressor

 

  def get_ame(max_leaf_nodes, train_X, val_X, train_y, val_y):

    model = DecisionTreeRegressor(max_leaf_nodes = max_leaf_nodes, random_state = 0)

    model.fit(train_X, train_y)

    preds_val = model.predict(val_X)

    mae = mean_absolute_error(val_y, preds_val)

    return(mae)

我可以使用循环比较选择最合适的max_leaf_nodes

    for max_leaf_nodes in [5,50,500,5000]:

      my_ame = get_ame(max_leaf_nodes, train_X, val_X, train_y, val_y)

      print(max_leaf_nodes, my_ame)

最后可以发现,当max leaf nodes 为 500时,MAE最小, 接下来我们换另外一种模型

6.Random Forests

The random forest uses many trees, and it makes a prediction by averaging the predictions of each component tree. It generally has much better predictive accuracy than a single decision tree and it works well with default parameters.

    from sklearn.ensemble import RandomForestRegressor

    from sklearn.metrics import mean_absolute_error

 

    forest_model = RandomForestRegressor(random_state=1)

    forest_model.fit(train_X,train_y)

    melb_preds = forest_model.predict(val_X)

    print(mean_absolute_error(val_y, melb_preds))

可以发现最后的误差,相对于决策树小。

one of the best features of Random Forest models is that they generally work reasonably even without this tuning.

7.Machine Learning Competitions

  • Build a Random Forest model with all of your data
  • Read in the "test" data, which doesn't include values for the target. Predict home values in the test data with your Random Forest model.
  • Submit those predictions to the competition and see your score.
  • Optionally, come back to see if you can improve your model by adding features or changing your model. Then you can resubmit to see how that stacks up on the competition leaderboard.

Intro to Machine Learning的更多相关文章

  1. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  2. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  3. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  4. 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  5. Easy machine learning pipelines with pipelearner: intro and call for contributors

    @drsimonj here to introduce pipelearner – a package I'm developing to make it easy to create machine ...

  6. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

  7. 机器学习案例学习【每周一例】之 Titanic: Machine Learning from Disaster

     下面一文章就总结几点关键: 1.要学会观察,尤其是输入数据的特征提取时,看各输入数据和输出的关系,用绘图看! 2.训练后,看测试数据和训练数据误差,确定是否过拟合还是欠拟合: 3.欠拟合的话,说明模 ...

  8. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  9. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

随机推荐

  1. JMS入门简介

    一.JMS是什么 1.JMS即Java消息服务(Java Message Service)应用程序接口,是一个Java平台中关于面向消息中间件(MOM)的API,用于在两个应用程序之间,或分布式系统中 ...

  2. SonarQube系列一、Linux安装与部署

    [前言] 随着项目团队规模日益壮大,项目代码量也越来越多.且不说团队成员编码水平层次不齐,即便是老手,也难免因为代码量的增加和任务的繁重而忽略代码的质量,最终的问题便是bug的增多和代码债务的堆积.因 ...

  3. MySQL学习随笔记录

    安装选custmer自定义安装.默认安装全部在c盘.自定义安装的时候有个advance port选项用来选择安装目录. -----------------------MySQL常见的一些操作命令--- ...

  4. python基础--列表,元组

    list1 = [1,2,3,4,5,6]list2 = ['wang','cong']# 1对列表中的元素取值(通过索引)print(list1[3]) # 4print(list2[1]) # c ...

  5. Notepad++编辑器——Verilog、代码片段、F6编译

    Notepad++是一款精致小巧的编辑器,自带Verilog语法识别功能,插件也挺好用的.这里陈列一下我的设置. 版本:Notepad++ 7.6.6 ,32位 //================= ...

  6. git:将代码提交到远程仓库(码云)

    初始化 进入一个任意的文件夹(如D:\aqin_test1\) git init # 初始化,让git将这个文件夹管理起来 git add . # 收集此文件夹下的所有文件 git config -- ...

  7. MQTT的学习之Mosquitto安装和使用

    Mosquitto是一个实现了MQTT3.1协议的代理服务器,由MQTT协议创始人之一的Andy Stanford-Clark开发,它为我们提供了非常棒的轻量级数据交换的解决方案.本文的主旨在于记录M ...

  8. nessus安装

    1.安装注册 (1)从https://www.tenable.com/products/nessus/select-your-operating-system上下载对应操作系统版本的nessus,结果 ...

  9. 《Java 8 in Action》Chapter 3:Lambda表达式

    1. Lambda简介 可以把Lambda表达式理解为简洁地表示可传递的匿名函数的一种方式:它没有名称,但它有参数列表.函数主体.返回类型,可能还有一个可以抛出的异常列表. 匿名--我们说匿名,是因为 ...

  10. 关于多线程中sleep、join、yield的区别

    好了.说了多线程,那就不得不说说多线程的sleep().join()和yield()三个方法的区别啦 1.sleep()方法 /** * Causes the currently executing ...