棋盘覆盖 状压DP+矩阵快速幂
题意:有一个m 行n 列的矩形方格棋盘,1 < = m< = 5,1=< n< =10^9,用1*2 的骨牌(可横放或竖放)完全覆盖,骨牌不能重叠,有多少种不同的覆盖的方法。你只需要求出覆盖方法总数 mod p 的值即可。
看到1e9立马知道快速幂DP或者数学方法,然后m<=5就状压吧
定义f[s][t]表示从s到t有多少种方案转移:则有f[s][t] = sigma(f[s][i] * f[i][t]) 所以可以用矩阵转移
最终答案就是f[(1<<m)-1][(1<<m)-1]
预处理一下两个状态能否转移到就可以矩阵加速DP了
Code:
#include <bits/stdc++.h>
using namespace std;
const int MAXS = 32;
int n, m, p;
struct Matrix
{
int M[MAXS][MAXS];
Matrix(){ memset(M, 0, sizeof M); }
friend Matrix operator * (const Matrix &A, const Matrix &B)
{
Matrix C;
for(int k = 0; k < (1<<m); k++)
for(int i = 0; i < (1<<m); i++) if(A.M[i][k])
for(int j = 0; j < (1<<m); j++) if(B.M[k][j])
C.M[i][j] = (1ll * A.M[i][k] * B.M[k][j] % p + C.M[i][j]) % p;
return C;
}
};
bool check(int s, int t)
{
int left = 0;
for(int i = 0; i < m; i++)
if((s&(1<<i)) && (t&(1<<i)))
(++left) %= 2;
else
{
if(left) return 0;
if(!(s&(1<<i)) && !(t&(1<<i)))
return 0;
}
return left ? 0 : 1;
}
void Pow(Matrix &a, int b, Matrix &ret)
{
ret = a;
if(!b) return;
while(b)
{
if(b & 1) ret = ret * a;
a = a * a; b >>= 1;
}
return;
}
int main ()
{
Matrix a, ans;
scanf("%d%d%d", &n, &m, &p);
for(int s = 0; s < (1<<m); s++)
for(int t = 0; t < (1<<m); t++)
a.M[s][t] = check(s, t);//预处理
Pow(a, n-1, ans);
printf("%d\n", ans.M[(1<<m)-1][(1<<m)-1]);
}
注意预处理s能否到达t时只能
(1)横着放在两列
或
(2)在t那一列竖着
因为只在s那一列放不属于本次转移
棋盘覆盖 状压DP+矩阵快速幂的更多相关文章
- BZOJ4000 TJOI2015棋盘(状压dp+矩阵快速幂)
显然每一行棋子的某种放法是否合法只与上一行有关,状压起来即可.然后n稍微有点大,矩阵快速幂即可. #include<iostream> #include<cstdio> #in ...
- HDU 5434 Peace small elephant 状压dp+矩阵快速幂
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant Accepts: 38 Submissions: ...
- 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂
[题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...
- BZOJ 4000: [TJOI2015]棋盘( 状压dp + 矩阵快速幂 )
状压dp, 然后转移都是一样的, 矩阵乘法+快速幂就行啦. O(logN*2^(3m)) ------------------------------------------------------- ...
- [BZOJ4000][TJOI2015]棋盘(状压DP+矩阵快速幂)
题意极其有毒,注意给的行列都是从0开始的. 状压DP,f[i][S]表示第i行状态为S的方案数,枚举上一行的状态转移.$O(n2^{2m})$ 使用矩阵加速,先构造矩阵a[S1][S2]表示上一行为S ...
- 【BZOJ4000】【LOJ2104】【TJOI2015】棋盘 (状压dp + 矩阵快速幂)
Description 有一个\(~n~\)行\(~m~\)列的棋盘,棋盘上可以放很多棋子,每个棋子的攻击范围有\(~3~\)行\(~p~\)列.用一个\(~3 \times p~\)的矩阵给出了 ...
- 【XSY2524】唯一神 状压DP 矩阵快速幂 FFT
题目大意 给你一个网格,每个格子有概率是\(1\)或是\(0\).告诉你每个点是\(0\)的概率,求\(1\)的连通块个数\(\bmod d=0\)的概率. 最开始所有格子的概率相等.有\(q\)次修 ...
- 2018.09.28 hdu5434 Peace small elephant(状压dp+矩阵快速幂)
传送门 看到n的范围的时候吓了一跳,然后发现可以矩阵快速幂优化. 我们用类似于状压dp的方法构造(1(1(1<<m)∗(1m)*(1m)∗(1<<m)m)m)大小的矩阵. 然后 ...
- BZOJ 2004 公交线路(状压DP+矩阵快速幂)
注意到每个路线相邻车站的距离不超过K,也就是说我们可以对连续K个车站的状态进行状压. 然后状压DP一下,用矩阵快速幂加速运算即可. #include <stdio.h> #include ...
随机推荐
- mybatisGenerator
mybatisGenerator,可以自定义生成的xml,dao接口文件名称,可以自动在生成的实体类上添加数据库字段的注释 项目结构: 在generatorConfig.xml配置好数据库和对应的表, ...
- Python 运算符 各类运算符总结
运算符详解2.1.算术运算符2.2.比较(关系)运算符2.3.赋值运算符2.4.逻辑运算符2.5.位运算符2.6.成员运算符2.7.身份运算符三.重要运算符说明3.1.join和符号”+“区别3.2. ...
- TiDB基本架构简单总结
TiDB特点 高可用 水平拓展 事务 SQL支持 TiDB架构 和MySql不同,TiDB是一个分布式的数据库而不是单个进程,所以整个TiDB是由以下角色组成: TiKV, PD, TiDB, T ...
- [POJ3682]King Arthur's Birthday Celebration[期望DP]
也许更好的阅读体验 \(\mathcal{Description}\) 每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第\(i\)天抛硬币的花费为\(2i-1\),求出抛硬币的天数 ...
- java之hibernate之关联映射之多对一单向关联
1.在之前学习了单表的crud操作.在实际应用中,大都是多表关联操作,这篇会学习如何处理多表之间的关系. 2.考察书籍表和书籍分类表的关系.书籍表和书籍分类表之间是多对一的关系.数据库的表设计为: 3 ...
- java之hibernate之session中对象的生命周期
1. session是用来执行对象的crud操作,并且session是对象事务工厂.session是线程级别的,所以生命周期比较短. 2.session中对象的生命周期图: 3.session中对象的 ...
- angularjs 文件下载 并 从response header中获取文件名
最近在做一个下载文件的功能,后台接口给的是二进制流的方式,那么前端要把二进制流下载下来. 这个过程使用$http的get请求,使用Blob接收,倒是没有难度,主要是遇到了,后台的文件名拿不到 的问题. ...
- UML系列——OO Unit4分析和学期总结
一.本单元的架构设计 1.类图 第一次 第二次 2.关键方法和架构简述 总体而言是读取图的时候就完成大部分计算(完成缓存),调用查询方法时只是展示计算的结果,少部分直接计算.主要是设计了各种自己定义的 ...
- 【转载】 C#使用string.IsNullOrWhiteSpace方法判断字符串是否为非空字符
在C#编程过程中,很多时候需要判断传入过来的字符串是否为Null或者空字符或者空白字符,此时就可以使用到string.IsNullOrWhiteSpace方法来判断,如果字符串为null或者空字符Em ...
- pythdon day13:网络编程socket
目录 day 13 learning python 49. 网络基础 49.1 IP地址 49.2 协议 50. socket编程(套接字编程) 50.1 socket编程简介 50.2 创建sock ...