棋盘覆盖 状压DP+矩阵快速幂
题意:有一个m 行n 列的矩形方格棋盘,1 < = m< = 5,1=< n< =10^9,用1*2 的骨牌(可横放或竖放)完全覆盖,骨牌不能重叠,有多少种不同的覆盖的方法。你只需要求出覆盖方法总数 mod p 的值即可。
看到1e9立马知道快速幂DP或者数学方法,然后m<=5就状压吧
定义f[s][t]表示从s到t有多少种方案转移:则有f[s][t] = sigma(f[s][i] * f[i][t]) 所以可以用矩阵转移
最终答案就是f[(1<<m)-1][(1<<m)-1]
预处理一下两个状态能否转移到就可以矩阵加速DP了
Code:
#include <bits/stdc++.h>
using namespace std;
const int MAXS = 32;
int n, m, p;
struct Matrix
{
int M[MAXS][MAXS];
Matrix(){ memset(M, 0, sizeof M); }
friend Matrix operator * (const Matrix &A, const Matrix &B)
{
Matrix C;
for(int k = 0; k < (1<<m); k++)
for(int i = 0; i < (1<<m); i++) if(A.M[i][k])
for(int j = 0; j < (1<<m); j++) if(B.M[k][j])
C.M[i][j] = (1ll * A.M[i][k] * B.M[k][j] % p + C.M[i][j]) % p;
return C;
}
};
bool check(int s, int t)
{
int left = 0;
for(int i = 0; i < m; i++)
if((s&(1<<i)) && (t&(1<<i)))
(++left) %= 2;
else
{
if(left) return 0;
if(!(s&(1<<i)) && !(t&(1<<i)))
return 0;
}
return left ? 0 : 1;
}
void Pow(Matrix &a, int b, Matrix &ret)
{
ret = a;
if(!b) return;
while(b)
{
if(b & 1) ret = ret * a;
a = a * a; b >>= 1;
}
return;
}
int main ()
{
Matrix a, ans;
scanf("%d%d%d", &n, &m, &p);
for(int s = 0; s < (1<<m); s++)
for(int t = 0; t < (1<<m); t++)
a.M[s][t] = check(s, t);//预处理
Pow(a, n-1, ans);
printf("%d\n", ans.M[(1<<m)-1][(1<<m)-1]);
}
注意预处理s能否到达t时只能
(1)横着放在两列
或
(2)在t那一列竖着
因为只在s那一列放不属于本次转移
棋盘覆盖 状压DP+矩阵快速幂的更多相关文章
- BZOJ4000 TJOI2015棋盘(状压dp+矩阵快速幂)
显然每一行棋子的某种放法是否合法只与上一行有关,状压起来即可.然后n稍微有点大,矩阵快速幂即可. #include<iostream> #include<cstdio> #in ...
- HDU 5434 Peace small elephant 状压dp+矩阵快速幂
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant Accepts: 38 Submissions: ...
- 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂
[题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...
- BZOJ 4000: [TJOI2015]棋盘( 状压dp + 矩阵快速幂 )
状压dp, 然后转移都是一样的, 矩阵乘法+快速幂就行啦. O(logN*2^(3m)) ------------------------------------------------------- ...
- [BZOJ4000][TJOI2015]棋盘(状压DP+矩阵快速幂)
题意极其有毒,注意给的行列都是从0开始的. 状压DP,f[i][S]表示第i行状态为S的方案数,枚举上一行的状态转移.$O(n2^{2m})$ 使用矩阵加速,先构造矩阵a[S1][S2]表示上一行为S ...
- 【BZOJ4000】【LOJ2104】【TJOI2015】棋盘 (状压dp + 矩阵快速幂)
Description 有一个\(~n~\)行\(~m~\)列的棋盘,棋盘上可以放很多棋子,每个棋子的攻击范围有\(~3~\)行\(~p~\)列.用一个\(~3 \times p~\)的矩阵给出了 ...
- 【XSY2524】唯一神 状压DP 矩阵快速幂 FFT
题目大意 给你一个网格,每个格子有概率是\(1\)或是\(0\).告诉你每个点是\(0\)的概率,求\(1\)的连通块个数\(\bmod d=0\)的概率. 最开始所有格子的概率相等.有\(q\)次修 ...
- 2018.09.28 hdu5434 Peace small elephant(状压dp+矩阵快速幂)
传送门 看到n的范围的时候吓了一跳,然后发现可以矩阵快速幂优化. 我们用类似于状压dp的方法构造(1(1(1<<m)∗(1m)*(1m)∗(1<<m)m)m)大小的矩阵. 然后 ...
- BZOJ 2004 公交线路(状压DP+矩阵快速幂)
注意到每个路线相邻车站的距离不超过K,也就是说我们可以对连续K个车站的状态进行状压. 然后状压DP一下,用矩阵快速幂加速运算即可. #include <stdio.h> #include ...
随机推荐
- MySQL中 while loop repeat 的用法
-- MySQL中的三中循环 while . loop .repeat 求 1-n 的和 -- 第一种 while 循环 -- 求 1-n 的和 /* while循环语法: while 条件 DO 循 ...
- xorm - Update,乐观锁,更新时间updated,NoAutoTime()
更新数据使用Update方法 Update方法的第一个参数为需要更新的内容,可以为一个结构体指针或者一个Map[string]interface{}类型. 当传入的为结构体指针时,只有非nil和非0的 ...
- WITH AS学习
一.WITH AS的含义 WITH AS短语,也叫做子查询部分(subquery factoring),可以让你做很多事情,定义一个SQL片断,该SQL片断会被整个SQL语句所用到.有的时候, ...
- Deep one-class classification
Deep one-class classification 2019-03-17 23:09:59 zpainter 阅读数 1027 收藏 文章标签: 单分类问题异常检测 更多 分类专栏: 论文 ...
- Hadoop 系列(六)—— HDFS 常用 Shell 命令
一.基本命令 打开 Hbase Shell: # hbase shell 1.1 获取帮助 # 获取帮助 help # 获取命令的详细信息 help 'status' 1.2 查看服务器状态 stat ...
- bootstrap-datetimepicker 日期控件起始时间和结束时间
项目中经常会用到起止时间,如下图: 需要引用以下几个文件: <link href="~/lib/bootstrap/dist/css/bootstrap.min.css" r ...
- 【转载】C#中List集合使用Exists方法判断是否存在符合条件的元素对象
在C#的List集合操作中,有时候需要根据条件判断List集合中是否存在符合条件的元素对象,此时就可以使用List集合的扩展方法Exists方法来实现,Exists方法的签名为bool Exists( ...
- Part_two:Redis之发布订阅
Redis发布订阅 发布订阅的命令 PUBLISH channel msg 将信息 message 发送到指定的频道 channel SUBSCRIBE channel [channel ...] 订 ...
- iOS 10.0前的Notification推送
前言 推送为远程推送,一般由苹果APNS服务器发送给苹果设备(iPhone,iPad) 推送分在前台和后台.在前台时 用户可以在application 的代理回调接口中做相应处理:在后台时 系统会全权 ...
- HBase集群环境搭建v1.0
本文档环境基于ubuntu14.04版本,如果最终不使用SuperMap iServer 9D ,可以不配置geomesa-hbase_2.11-2.0.1-bin.tar.gz (转发请注明出处:h ...