题意:

B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为
从 1 到 n 的正整数。每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏
的目标是使所有灯都灭掉。但是当操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被
改变,即从亮变成灭,或者是从灭变成亮。B 君发现这个游戏很难,于是想到了这样的一个策略,每次等概率随机
操作一个开关,直到所有灯都灭掉。这个策略需要的操作次数很多, B 君想到这样的一个优化。如果当前局面,
可以通过操作小于等于 k 个开关使所有灯都灭掉,那么他将不再随机,直接选择操作次数最小的操作方法(这个
策略显然小于等于 k 步)操作这些开关。B 君想知道按照这个策略(也就是先随机操作,最后小于等于 k 步,使
用操作次数最小的操作方法)的操作次数的期望。这个期望可能很大,但是 B 君发现这个期望乘以 n 的阶乘一定
是整数,所以他只需要知道这个整数对 100003 取模之后的结果。
1 ≤ n ≤ 100000, 0 ≤ k ≤ n;
 
思路:更正:下图中g[i]=((n-i)*g[i+1]+n)/i,官方题解谋财害命

我不是很了解最后一张图在说什么

 const mo=;
var head,a:array[..]of longint;
vet,next:array[..]of longint;
exf,f,g:array[..]of int64;
n,k1,i,j,t,e,v,tot:longint;
s,ans:int64; procedure add(a,b:longint);
begin
inc(tot);
next[tot]:=head[a];
vet[tot]:=b;
head[a]:=tot;
end; function mult(x,y:int64):int64;
begin
mult:=;
while y> do
begin
if y and = then mult:=mult*x mod mo;
x:=x*x mod mo;
y:=y>>;
end;
end; begin
assign(input,'bzoj4872.in'); reset(input);
assign(output,'bzoj4872.out'); rewrite(output);
readln(n,k1);
exf[]:=; exf[]:=;
for i:= to do exf[i]:=exf[mo mod i]*(mo-mo div i) mod mo;
for i:= to n do read(a[i]);
for i:= to n do
for j:= to n div i do
begin
t:=j*i;
add(t,i);
end;
for i:=n downto do
if a[i]= then
begin
inc(s);
e:=head[i];
while e<> do
begin
v:=vet[e];
a[v]:=a[v] xor ;
e:=next[e];
end;
end;
if s<=k1 then
begin
for i:= to n do s:=s*i mod mo;
writeln(s);
close(input);
close(output);
exit;
end;
g[n]:=;
for i:=n- downto k1+ do
g[i]:=(g[i+]*(n-i) mod mo+n) mod mo*exf[i] mod mo;
for i:= to k1 do g[i]:=;
for i:= to k1 do f[i]:=i;
for i:=k1+ to n do f[i]:=(f[i-]+g[i]) mod mo;
ans:=f[s];
for i:= to n do ans:=ans*i mod mo;
writeln(ans);
close(input);
close(output);
end.

【BZOJ4872】分手是祝愿(期望DP)的更多相关文章

  1. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

  2. bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]

    4872: [Shoi2017]分手是祝愿 题意:n个灯开关游戏,按i后i的约数都改变状态.随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略.问期望步数\(\cdot n! \mod ...

  3. 【BZOJ】4872: [Shoi2017]分手是祝愿 期望DP

    [题意]给定n盏灯的01状态,操作第 i 盏灯会将所有编号为 i 的约数的灯取反.每次随机操作一盏灯直至当前状态能够在k步内全灭为止(然后直接灭),求期望步数.n,k<=10^5. [算法]期望 ...

  4. P3750 [六省联考2017]分手是祝愿 期望DP

    \(\color{#0066ff}{ 题目描述 }\) Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 \(n\) 个灯和 ...

  5. 【BZOJ4872】【SHOI2017】分手是祝愿 期望DP

    题目大意 有\(n\)盏灯和\(n\)个开关,初始时有的灯是亮的,有的灯是暗的.按下第\(i\)个开关会使第\(j\)盏灯的状态被改变,其中\(j|i\).每次你会随机操作一个开关,直到可以通过不多于 ...

  6. 【bzoj4872】[Shoi2017]分手是祝愿 期望dp

    Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...

  7. [六省联考2017]分手是祝愿 期望DP

    表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...

  8. BZOJ 4827 [Shoi2017]分手是祝愿 ——期望DP

    显然,考虑当前状态最少需要几步,直接贪心即可. 显然我们只需要考虑消掉这几个就好了. 然后发现,关系式找出来很简单,是$f(i) f(i+1) f(i-1)$之间的. 但是计算的时候并不好算. 所以把 ...

  9. [六省联考2017]分手是祝愿——期望DP

    原题戳这里 首先可以确定的是最优策略一定是从大到小开始,遇到亮的就关掉,因此我们可以\(O(nlogn)\)的预处理出初始局面需要的最小操作次数\(tot\). 然后容(hen)易(nan)发现即使加 ...

  10. [HEOI2017]分手是祝愿 期望概率dp 差分

    经分析可知:I.操作每个灯可看做一种异或状态 II.每个状态可看做是一些异或状态的异或和,而且每个异或状态只能由它本身释放或放入 III.每一种异或状态只有存在不存在两中可行状态,因此这些灯只有同时处 ...

随机推荐

  1. Python variable 作用域和初始化

    Python 根据LEGB rule在不同的namespace中找变量 在def的函数中对global 变量做修改还是不推荐的,应该将其作为参数传入函数 try: do_something() cnt ...

  2. div里面整齐的字体样式,所有浏览器都兼容

    <div id="wenda"> <div class="table_wd" > <div class="tr1&quo ...

  3. c# winform如何屏蔽键盘上下左右键

    重写事件: protected override bool ProcessDialogKey(Keys keyData) { if (keyData == Keys.Up || keyData == ...

  4. 获取当前时间(日期格式) && 获取当前加一年的时间(日期格式)

    获取当前时间,日期格式function currentDate() { var date = new Date(); var y = date.getFullYear(); var m = date. ...

  5. g20学习笔记

    BALProblem.h---------定义BALProblem类. BALProblem类保存我们的BA所需要的所有数据,包括相机与路标之间的联系,相机变量+路标变量的初始值.这些数据的原始信息都 ...

  6. 四种方案解决ScrollView嵌套ListView问题 [复制链接]

    以下文章转自@安卓泡面 在工作中,曾多次碰到ScrollView嵌套ListView的问题,网上的解决方法有很多种,但是杂而不全.我试过很多种方法,它们各有利弊. 在这里我将会从使用ScrollVie ...

  7. Bootstrap table的基础用法

    一.官方文档 Bootstrap 中文网:http://www.bootcss.com/ Bootstrap Table 中文网 : http://bootstrap-table.wenzhixin. ...

  8. PLSQL连接Oracle 报错ORA-12154:TNS:无法解析指定的连接标识符

    原因是图中第三行数据库应该填ip地址,我填了数据库名! 之前不懂原理,现来填坑,并不是应该填ip,而是填tnsname.ora中配置的名字(红框部分) ​

  9. [Thu Summer Camp2016]补退选

    题目描述不说了. 题解: Trie+vector…… Trie存学生,vector存答案. 极为无脑但无脑到让人怀疑 代码: #include<cmath> #include<vec ...

  10. 动态 SQL(1)

    使用动态 SQL 完成多条件查询 动态 SQL 是 MyBatis 的一个强大的特性.在使用 JDBC 操作数据时,如果查询条件特别多,将条件串联成 SQL 字符串是一件痛苦的事情,通常的解决方法是写 ...