数据分析库Pandas
Pandas介绍
导入pandas库
import pandas as pd
读取CSV文件
df = pd.read_csv('file_name') #注意文件路径
读取前几条数据
df.head(num) #num默认值是5,可以自己指定
返回当前文件的信息
df.info()
df.index
df.columns
df.dtypes
df.values
注意:Pandas的处理对象是DataFrame结构
创建一个dataframe结构
data = {‘name’:['wemo', 'azhu', 'john'],'age':[23, 18, 30]}
df_data = pd.DataFrame(data)
取指定的数据
age = df['Age']
age[:5] #取出前五个年龄的值
指定索引读取数据
df = df.set_index('Name')
df.head()
得到数据的基本统计特性
df.describle()
pandas索引
df[['Age','Fare']][:5]
iloc和loc的不同了:loc是根据dataframe的具体标签选取列,而iloc是根据标签所在的位置,从0开始计数
df.iloc[0:5, 1:3]
df.set_index('Name').loc['wemo, azhu', 'Fare']
bool类型的索引
df['Fare'] > 40 #返回的是True or False
df[ df['Fare'] > 40] #通过bool类型索引返回票价大于40的数据
(df.['Age'] > 70).sum() #统计年龄大于70的人数
groupby操作
import pandas as pd
df = pd.DataFrame({'key':['A', 'B', 'C', 'A', 'B', 'C'], 'data':[0, 5, 10, 5, 10, 15, 10, 15, 20]})
#进行分类统计操作
for key in ['A', 'B', 'C']:
print(df[df['key']==key].sum())
#下面通过groupby来实现上面代码的功能
df.groupby('key').sum(()
groupby的应用
df.groupby('Sex')['Age'].mean() #统计男女性别的年龄平均数
数值运算
进行数值计算的操作
import pandas as pd
df = pd.DataFrame([[1,2,3],[4,5,6]],index = ['a','b'],columns = ['A','B','C'])
df.sum() #默认按照第0维度计算
df.sum(axis = 1)
df.sum(axis = 'columns')
df.mean(axis = 1)
df.min()
df.max()
df.median() #进行中位数计算
df.cov() #协方差
df.corr() #相关系数
df['Age'].value_counts() #统计某特征的值的分布
df['Age'].value_counts(ascending = True,bins = 5) #升序排列,bins表示平均分成五个区间
对象操作
Series结构的增删改查
Series 是一维带标签的数组,它可以包含任何数据类型。包括整数,字符串,浮点数,Python 对象等。Series 可以通过标签来定位。
定义一个Series结构
data = [10,11,12]
index = ['a','b','c']
s = pd.Series(data = data,index = index)
Series结构的查操作
s[0] #通过位置来查询,类似于numpy
mask = [True,False,True]
s[mask] #通过布尔类型查询
s.loc['b'] #通过标签查询,区别于numpy的地方
s.iloc[1] #通过位置查询
Series结构的改操作
s1['a'] = 100 #通过对标签赋值
s1.replace(to_replace = 100,value = 101,inplace = True) #inplace为True表示改变s1的值,默认为false不改变原series的值(需要进行赋值操作)
s1.index = ['a','b','d'] #改变标签
s1.rename(index = {'a':'A'},inplace = True) #改变一个标签的值
Series结构的增操作
data = [100,110]
index = ['h','k']
s2 = pd.Series(data = data,index = index)
s3 = s1.append(s2) #直接append一组数据进来
#
s3['j'] = 500 #类似于字典添加键值对的操作
#
s1.append(s2,ignore_index = True) #ignore_index表示是否重新创建索引(0-n),默认ignore_index = False
Series结构的删操作
del s1['A'] #类似字典操作
s1.drop(['b','d'],inplace = True)
DataFrame结构的增删改查
DataFrame 是二维的带标签的数据结构。我们可以通过标签来定位数据。
定义一个DataFrame结构
data = [[1,2,3],[4,5,6]]
index = ['a','b']
columns = ['A','B','C']
df = pd.DataFrame(data=data,index=index,columns = columns)
查操作
df['A']
df.iloc[0]
df.loc['a']
改操作
df.loc['a']['A'] = 150
增操作
df.loc['c'] = [1,2,3]
df3 = pd.concat([df,df2],axis = 0)
删操作
df5.drop(['j'],axis=0,inplace = True)
merge函数的操作
res = pd.merge(left, right, on = ['key1', 'key2'], on='key',how = 'outer', indicator = True)
left:为DataFrame结构的对象,表示合并后位于左边
right:为DataFrame结构的对象,表示合并后位于左边
on:表示以什么为基准合并
how:默认以交集的方式合并,outer指明以并集方式合并。还有可以以right/left为基准合并
indicator:在合并后DataFrame结构中显示数据的来源
result = left.join(right, on='key') #还有一个合并操作join,需要时细查文档
数据显示设置
pd.set_option('display.max_rows',6)
pd.set_option('display.precision',5)
数据透视表
数据透视表:可以动态地改变它们的版面布置,以便按照不同方式分析数据,也可以重新安排行号、列标和页字段。每一次改变版面布置时,数据透视表会立即按照新的布置重新计算数据
df.pivot_table(index = 'Sex',columns='Pclass',values='Fare',aggfunc='max')
Pclass 1 2 3
Sex
female 512.3292 65.0 69.55
male 512.3292 73.5 69.55
aggfunc默认是求平均值,也可以是计数count、求最大值max
时间序列的操作
import datetime
dt = datetime.datetime(year=2018,month=4,day=23,hour=10,minute=30)
print (dt) #普通的时间操作
output:2018-04-23 10:30:00
#Pandas对时间序列的操作
import pandas as pd
ts = pd.Timestamp('2017-11-24') #通过Timestamp是一种方式
pd.to_datatime('2017-11-24')
数据分析库Pandas的更多相关文章
- Python数据分析库pandas基本操作
Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Pyt ...
- 教程 | 一文入门Python数据分析库Pandas
首先要给那些不熟悉 Pandas 的人简单介绍一下,Pandas 是 Python 生态系统中最流行的数据分析库.它能够完成许多任务,包括: 读/写不同格式的数据 选择数据的子集 跨行/列计算 寻找并 ...
- python数据分析库pandas
在我看来,对于Numpy以及Matplotlib,Pandas可以帮助创建一个非常牢固的用于数据挖掘与分析的基础.而Scipy(会在接下来的帖子中提及)当然是另一个主要的也十分出色的科学计算库,但是我 ...
- 预备知识-python核心用法常用数据分析库(上)
1.预备知识-python核心用法常用数据分析库(上) 目录 1.预备知识-python核心用法常用数据分析库(上) 概述 实验环境 任务一:环境安装与配置 [实验目标] [实验步骤] 任务二:Pan ...
- Python 数据处理库 pandas 入门教程
Python 数据处理库 pandas 入门教程2018/04/17 · 工具与框架 · Pandas, Python 原文出处: 强波的技术博客 pandas是一个Python语言的软件包,在我们使 ...
- Python 金融数据分析库及相关框架
BackTest框架库: PyAlgoTrade ZipLine 金融数据分析库: pandas
- 在量化金融中15个最流行的Python数据分析库
Python是当今应用最广泛的编程语言之一,以其效率和代码可读性著称.作为一个科学数据的编程语言,Python介于R和java之间,前者主要集中在数据分析和可视化,而后者主要应用于大型应用.这种灵活性 ...
- Python 数据处理库pandas教程(最后附上pandas_datareader使用实例)
0 简单介绍 pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程. pandas提供了快速,灵活和富有 ...
- Python数据分析之Pandas操作大全
从头到尾都是手码的,文中的所有示例也都是在Pycharm中运行过的,自己整理笔记的最大好处在于可以按照自己的思路来构建矿建,等到将来在需要的时候能够以最快的速度看懂并应用=_= 注:为方便表述,本章设 ...
随机推荐
- hadoop学习笔记(六):HBase体系结构和数据模型
1. HBase体系结构 一个完整分布式的HBase的组成示意图如下,后面我们再详细谈其工作原理. 1)Client 包含访问HBase的接口并维护cache来加快对HBase的访问. 2)Zooke ...
- Spring3.x错误----Bean named "txAdvice" must be of type[org.aopallibance.aop.Advice
Spring3.x错误: 解决方法: aopalliance-1.0.jar 和 aopalliance-alpha1.jar之间的冲突.
- linux常见命令整理
Linux管理文件和目录的命令 命令 功能 命令 功能 pwd 显示当前目录 ls 查看目录下的内容 cd 改变所在目录 cat 显示文件的内容 grep 在文件中查找某字符 cp 复制文件 touc ...
- WCF客户端第一请求server特别慢,解决办法
最近开发WCF应用的客户端,第一连接WCF后,请求数据返回的速度特别慢,不知道原因如何.最后改了下系统生成的APP.Config文件就好了,原来没有useDefaultWebProxy的选项,没有的时 ...
- 开源投影工具Proj——进行坐标转换
proj.4 is a standard UNIX filter function which converts geographic longitude and latitude coordinat ...
- node nodemailer
需求:通过nodejs发送邮件 一般都是用nodemailer这个模块.目前有0.7和1.0两个版本,网上的很多教程和代码,大都是按照0.7写的,自己做的时候需要注意看README.md 支持的ser ...
- Why I Want A Wife
I want a wife who will take care of my physical needs. I want a wife who will keep my house clean. A ...
- delphi执行一个外部程序,当外部程序结束后,delphi程序立即响应
//需要引用 ShellAPI 单元;procedure TForm1.Button1Click(Sender: TObject); var SEInfo: TShellExecuteInfo; Ex ...
- [leetcode] 21. Implement strStr()
这个题目是典型的KMP算法,当然也可以试试BM,当然有关KMP和BM的介绍阮一峰曾经写过比较好的科普,然后july也有讲解,不过那个太长了. 先放题目吧: Implement strStr(). Re ...
- Python学习-41.Python中的断言
先来点题外话: 在现代编程开发中,TDD(测试驱动开发)变得越来越流行(PS:DDD(领域驱动开发)也是,但两者并不冲突,就像面向过程和面向对象).而作为TDD的根本——单元测试也是越来越重要,单元测 ...