Time Limit: 10 Sec Memory Limit: 64 MB

Description

  

  在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮。 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧.

  

Input

  

  一行包含两个整数N,M,中间用空格分开.

  

Output

  

  输出所有的方案数,由于值比较大,输出其mod 9999973

  

Sample Input

  

  1 3

  

Sample Output

  

  7

  

HINT

  

  除了在3个格子中都放满炮的的情况外,其它的都可以.

  100%的数据中N,M不超过100

  50%的数据中,N,M至少有一个数不超过8

  30%的数据中,N,M均不超过6

  

  

  

Solution

  

​   这题的关键在于设置状态。

  

  ​ 前面的数据范围很容易让人联想到状态压缩,但是这反而不利于解题。

  

​   考虑题目的本质是什么,其实是求在一个矩阵中放置每行不超过2个、每列不超过2个元素的方案数。

  

​   还是一行一行地计算,如何记录每列能不能放置一个新的元素?

  

  ​ 观察到每一列元素的数量只可能是0或1或2,每列元素的数量也有重要意义:如果已有2个,则这列不可再考虑。否则还可以考虑在这行的这列的位置加一个元素。这个状态很方便记录。

  

​   那就设\(f[i][a_1][a_2]\)表示当前考虑到第\(i\)行,有\(m-a_1-a_2\)列还是空的,有\(a_1\)列已经有一个元素,有\(a_2\)列已经放好两个元素。

  

​   转移也是显然的,因为每行最多放置两个元素,所以一共只有五种简单的转移。每种已有元素相同的列其实本质上是一样的,暴力考虑一下就可以了。

  

  

  

#include <cstdio>
using namespace std;
const int N=105,MOD=9999973;
int n,m;
int f[N][N][N];
inline int C2(int n){
if(n<=1) return 0;
return (1LL*n*(n-1)/2)%MOD;
}
int main(){
freopen("input.in","r",stdin);
scanf("%d%d",&n,&m);
f[0][0][0]=1;
for(int i=0;i<n;i++)
for(int a1=0;a1<=m;a1++)
for(int a2=m-a1;a2>=0;a2--)
if(f[i][a1][a2]){
(f[i+1][a1][a2]+=f[i][a1][a2])%=MOD;
int a0=m-a1-a2;
if(a1+a2+1<=m)
(f[i+1][a1+1][a2]+=1LL*a0*f[i][a1][a2]%MOD)%=MOD;
if(a1+a2+2<=m)
(f[i+1][a1+2][a2]+=1LL*C2(a0)*f[i][a1][a2]%MOD)%=MOD;
if(a1>=1)
(f[i+1][a1-1][a2+1]+=1LL*a1*f[i][a1][a2]%MOD)%=MOD;
if(a1>=2)
(f[i+1][a1-2][a2+2]+=1LL*C2(a1)*f[i][a1][a2]%MOD)%=MOD;
if(a1+a2+1<=m)
(f[i+1][a1][a2+1]+=1LL*a0*a1%MOD*f[i][a1][a2]%MOD)%=MOD;
}
int ans=0;
for(int a1=0;a1<=m;a1++)
for(int a2=m-a1;a2>=0;a2--)
(ans+=f[n][a1][a2])%=MOD;
printf("%d\n",ans);
return 0;
}

【BZOJ1801】【Ahoi2009】chess 中国象棋的更多相关文章

  1. BZOJ1801 Ahoi2009 chess 中国象棋 【DP+组合计数】*

    BZOJ1801 Ahoi2009 chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行 ...

  2. BZOJ1801 [Ahoi2009]chess 中国象棋(DP, 计数)

    题目链接 [Ahoi2009]chess 中国象棋 设$f[i][j][k]$为前i行,$j$列放了1个棋子,$k$列放了2个棋子的方案数 分6种情况讨论,依次状态转移. #include <b ...

  3. bzoj1801: [Ahoi2009]chess 中国象棋(DP)

    1801: [Ahoi2009]chess 中国象棋 题目:传送门 题解: 表示自己的DP菜的抠脚 %题解... 定义f[i][j][k]表示前i行 仅有一个棋子的有j列 有两个棋子的有k个 的方案数 ...

  4. [luogu2051][bzoj1801][AHOI2009]chess中国象棋【动态规划】

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  5. BZOJ1801 [Ahoi2009]chess 中国象棋 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1801 题意概括 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请 ...

  6. BZOJ1801:[Ahoi2009]chess 中国象棋

    Time Limit: 10 Sec  Memory Limit: 64 MB Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置 ...

  7. bzoj1801: [Ahoi2009]chess 中国象棋 dp

    题意:在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. 题解:dp[i][j][k]表示到了第i行,有j列 ...

  8. BZOJ1801 [Ahoi2009]chess 中国象棋 【dp】

    题目 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. 输入格式 一行包含两个整数N,M,中间用空格分开. ...

  9. bzoj1801[AHOI2009]CHESS中国象棋

    题意:在棋盘上放一些炮使得它们不互相攻击.其实就是一行/一列最多放两个. 50分的数据中n,m至少有一个不超过8,比较直接的想法是对n/m中较小的一维做状态压缩,状态f[i][S1][S2]表示在前i ...

  10. 【BZOJ1801】[Ahoi2009]chess 中国象棋 DP

    [BZOJ1801][Ahoi2009]chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮 ...

随机推荐

  1. 《杜增强讲Unity之Tanks坦克大战》2-场景设置

    2  场景设置 2.1 本节效果预览   2.2 项目目录设置 点击Project面板的Create按钮,在根目录下面新建wm文件夹   Wm文件夹用于存放我们自己生成的Prefab和脚本等其他资源, ...

  2. jmeter控制器(二)

    循环控制器: 顾名思义就是做循环控制的,与线程组的循环一样的,不过这里的循环控制器是用在一个单独的模块的,而在线程组里面的循环是作用于全局的.循环控制器里面设置的循环次数是局部有效,只控制自己范围内的 ...

  3. Python中fnmatch模块的使用

    fnmatch()函数匹配能力介于简单的字符串方法和强大的正则表达式之间,如果在数据处理操作中只需要简单的通配符就能完成的时候,这通常是一个比较合理的方案.此模块的主要作用是文件名称的匹配,并且匹配的 ...

  4. Beta冲刺第二周王者荣耀交流协会第五次会议

    1.立会照片 成员:王超,高远博,冉华,王磊,王玉玲,任思佳,袁玥全部到齐. master:王磊 2.时间跨度: 2017年11月21日 15:00 — 15:17,总计17分钟. 3.地点: 一食堂 ...

  5. Dailu Scrum (2015/10/27)

    在周日晚上PM已经为大家分配了部分的代码修改工作,今天晚上PM召集了被分配代码工作的3个DEV一起讨论要求修改的代码.在共同讨论的过程中确有发现以下代码的不规范之处,PM当即要求我们先要修改规范代码的 ...

  6. 团队项目-NABCD

    用户需求分析与NABCD 模拟经营类(SIM)游戏:玩家模拟经营一家软件公司,平台初步定为Android. Need需求 任何一款游戏都要有自己的定位和目标群体,这些 iiMediaResearch数 ...

  7. [2017BUAA软工]结对项目

    软工结对项目 一. Github项目地址 https://github.com/crvz6182/sudoku_partner 二. PSP表格 Psp personal software progr ...

  8. arcgis 10.3中文版安装教程、配置及常见问题(百度的有些错误)

    参考的: 1.http://wenku.baidu.com/link?url=W-wo_lEMvzHxF19w91X7H0WDjyCQ16DjGu4ViaZ4-eVPr0NTU-LrZTPK1oyzT ...

  9. 404 Note Found Team's First Blood

    团队构成: 队员学号姓名队长标注: 031602114--胡绪佩(队长) 031602113--何宇恒 081600410--胡青元 031602627--刘恺琳 031602525--刘一好 031 ...

  10. 优化Linux下的内核TCP参数以提高系统性能

    内核的优化跟服务器的优化一样,应本着稳定安全的原则.下面以64位的Centos5.5下的Squid服务器为例来说明,待客户端与服务器端建立 TCP/IP连接后就会关闭SOCKET,服务器端连接的端口状 ...