Time Limit: 10 Sec Memory Limit: 64 MB

Description

  

  在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮。 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧.

  

Input

  

  一行包含两个整数N,M,中间用空格分开.

  

Output

  

  输出所有的方案数,由于值比较大,输出其mod 9999973

  

Sample Input

  

  1 3

  

Sample Output

  

  7

  

HINT

  

  除了在3个格子中都放满炮的的情况外,其它的都可以.

  100%的数据中N,M不超过100

  50%的数据中,N,M至少有一个数不超过8

  30%的数据中,N,M均不超过6

  

  

  

Solution

  

​   这题的关键在于设置状态。

  

  ​ 前面的数据范围很容易让人联想到状态压缩,但是这反而不利于解题。

  

​   考虑题目的本质是什么,其实是求在一个矩阵中放置每行不超过2个、每列不超过2个元素的方案数。

  

​   还是一行一行地计算,如何记录每列能不能放置一个新的元素?

  

  ​ 观察到每一列元素的数量只可能是0或1或2,每列元素的数量也有重要意义:如果已有2个,则这列不可再考虑。否则还可以考虑在这行的这列的位置加一个元素。这个状态很方便记录。

  

​   那就设\(f[i][a_1][a_2]\)表示当前考虑到第\(i\)行,有\(m-a_1-a_2\)列还是空的,有\(a_1\)列已经有一个元素,有\(a_2\)列已经放好两个元素。

  

​   转移也是显然的,因为每行最多放置两个元素,所以一共只有五种简单的转移。每种已有元素相同的列其实本质上是一样的,暴力考虑一下就可以了。

  

  

  

#include <cstdio>
using namespace std;
const int N=105,MOD=9999973;
int n,m;
int f[N][N][N];
inline int C2(int n){
if(n<=1) return 0;
return (1LL*n*(n-1)/2)%MOD;
}
int main(){
freopen("input.in","r",stdin);
scanf("%d%d",&n,&m);
f[0][0][0]=1;
for(int i=0;i<n;i++)
for(int a1=0;a1<=m;a1++)
for(int a2=m-a1;a2>=0;a2--)
if(f[i][a1][a2]){
(f[i+1][a1][a2]+=f[i][a1][a2])%=MOD;
int a0=m-a1-a2;
if(a1+a2+1<=m)
(f[i+1][a1+1][a2]+=1LL*a0*f[i][a1][a2]%MOD)%=MOD;
if(a1+a2+2<=m)
(f[i+1][a1+2][a2]+=1LL*C2(a0)*f[i][a1][a2]%MOD)%=MOD;
if(a1>=1)
(f[i+1][a1-1][a2+1]+=1LL*a1*f[i][a1][a2]%MOD)%=MOD;
if(a1>=2)
(f[i+1][a1-2][a2+2]+=1LL*C2(a1)*f[i][a1][a2]%MOD)%=MOD;
if(a1+a2+1<=m)
(f[i+1][a1][a2+1]+=1LL*a0*a1%MOD*f[i][a1][a2]%MOD)%=MOD;
}
int ans=0;
for(int a1=0;a1<=m;a1++)
for(int a2=m-a1;a2>=0;a2--)
(ans+=f[n][a1][a2])%=MOD;
printf("%d\n",ans);
return 0;
}

【BZOJ1801】【Ahoi2009】chess 中国象棋的更多相关文章

  1. BZOJ1801 Ahoi2009 chess 中国象棋 【DP+组合计数】*

    BZOJ1801 Ahoi2009 chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行 ...

  2. BZOJ1801 [Ahoi2009]chess 中国象棋(DP, 计数)

    题目链接 [Ahoi2009]chess 中国象棋 设$f[i][j][k]$为前i行,$j$列放了1个棋子,$k$列放了2个棋子的方案数 分6种情况讨论,依次状态转移. #include <b ...

  3. bzoj1801: [Ahoi2009]chess 中国象棋(DP)

    1801: [Ahoi2009]chess 中国象棋 题目:传送门 题解: 表示自己的DP菜的抠脚 %题解... 定义f[i][j][k]表示前i行 仅有一个棋子的有j列 有两个棋子的有k个 的方案数 ...

  4. [luogu2051][bzoj1801][AHOI2009]chess中国象棋【动态规划】

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  5. BZOJ1801 [Ahoi2009]chess 中国象棋 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1801 题意概括 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请 ...

  6. BZOJ1801:[Ahoi2009]chess 中国象棋

    Time Limit: 10 Sec  Memory Limit: 64 MB Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置 ...

  7. bzoj1801: [Ahoi2009]chess 中国象棋 dp

    题意:在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. 题解:dp[i][j][k]表示到了第i行,有j列 ...

  8. BZOJ1801 [Ahoi2009]chess 中国象棋 【dp】

    题目 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. 输入格式 一行包含两个整数N,M,中间用空格分开. ...

  9. bzoj1801[AHOI2009]CHESS中国象棋

    题意:在棋盘上放一些炮使得它们不互相攻击.其实就是一行/一列最多放两个. 50分的数据中n,m至少有一个不超过8,比较直接的想法是对n/m中较小的一维做状态压缩,状态f[i][S1][S2]表示在前i ...

  10. 【BZOJ1801】[Ahoi2009]chess 中国象棋 DP

    [BZOJ1801][Ahoi2009]chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮 ...

随机推荐

  1. Dubbo问题处理集合

    1 . 启动微服务的时候,报错信息如下: 核心:Can not lock the registry cache file /root/.dubbo/dubbo-registry-127.0.0.1.c ...

  2. Linux shell中&,&&,|,||的用法

    前言 在玩dvwa的命令注入漏洞的时候,遇到了没有预料到的错误,执行 ping 127.0.0.1 & echo "<?php phpinfo(); ?>" & ...

  3. tomcat安装及使用详解

    常用软件安装及使用目录 资料链接:https://pan.baidu.com/s/1XOUlneFqt-_1tOLSmc-E1g     网盘分享的文件在此 1. Tomcat简介 Tomcat是一个 ...

  4. 学习Mybatis的两个必须的jar包分享

    百度云盘:http://pan.baidu.com/s/1nuNxRcd 提取码:t765(好像不需要提取码,不太会用云盘...) 自己学习mybatis的时候去找这两个jar包也是不容易,特别分享一 ...

  5. 第10章 系统级I/O(下)

    10.7  I/O重定向 Unix外壳提供了I/O重定向操作符,允许用户将磁盘文件和标准输出输入联系起来. 例如:unix>ls>foo.txt,使得外壳加载和执行ls程序,将标准输出重定 ...

  6. Linux系统(X32)安装Oracle11g完整安装图文教程另附基本操作

    一.修改操作系统核心参数 在Root用户下执行以下步骤: )修改用户的SHELL的限制,修改/etc/security/limits.conf文件 输入命令:vi /etc/security/limi ...

  7. mianshi

    https://blog.csdn.net/u012557610/article/details/80350099 https://blog.csdn.net/liuqiyao_01/article/ ...

  8. Week2-作业1:阅读与博客

    Week2-作业1:阅读与博客 第一章 :概论 1. 原文如下: 移山公司程序员阿超的宝贝儿子上了小学二年级,老师让家长每天出30道加减法题目给孩子做.阿超想写一个小程序来做这件事,具体实现可以采用很 ...

  9. 树莓派配置RTC时钟(DS3231,I2C接口)

    1.购买基于DS3231的RTC时钟模块,并且支持3.3V的那种 2.配置树莓派 a.打开树莓派的i2c接口 sudo raspi-config -->Interfacing Options - ...

  10. 解决:"2013-01-06 00:00:00" is not a valid date and time.

    在转换时间格式时,遇到以下问题: 弹出对话框:"2013-01-06 00:00:00" is not a valid date and time. 在百度上查找,发现是本地日期格 ...