Given a binary tree, return the values of its boundary in anti-clockwise direction starting from root.
Boundary includes left boundary, leaves, and right boundary in order without duplicate nodes.

Left boundary is defined as the path from root to the left-most node. Right boundary is defined as the path from root to the right-most node. If the root doesn't have left subtree or right subtree, then the root itself is left boundary or right boundary. Note this definition only applies to the input binary tree, and not applies to any subtrees.

The left-most node is defined as a leaf node you could reach when you always firstly travel to the left subtree if exists. If not, travel to the right subtree. Repeat until you reach a leaf node.

The right-most node is also defined by the same way with left and right exchanged.

Example 1

Input:

  1
\
2
/ \
3 4

Ouput:

[1, 3, 4, 2]

Explanation:

The root doesn't have left subtree, so the root itself is left boundary.

The leaves are node 3 and 4.

The right boundary are node 1,2,4. Note the anti-clockwise direction means you should output reversed right boundary.

So order them in anti-clockwise without duplicates and we have [1,3,4,2].

Example 2

Input:

    ____1_____
/ \
2 3
/ \ /
4 5 6
/ \ / \
7 8 9 10

Ouput:

[1,2,4,7,8,9,10,6,3]

Explanation:

The left boundary are node 1,2,4. (4 is the left-most node according to definition)

The leaves are node 4,7,8,9,10.

The right boundary are node 1,3,6,10. (10 is the right-most node).

So order them in anti-clockwise without duplicate nodes we have [1,2,4,7,8,9,10,6,3].

算法分析

本题的主要难点是如何判断一个节点是在Left boundary上的、在Right boundary 上的还是一颗普通的节点。

为了将叶节点加入List中,首先想到要用 DFS 算法。但如果仅仅使用DFS算法,那么 left boundary 和 right boundary 上的节点就无法加入到List中了。因此,需要设计两个包装函数GetLeftPath 和 GetRightPath,在这两个函数中,通过判断选择递归地使用本身函数或者调用DFS算法函数。GetLeftPath函数默认传入的节点为 Left boundary 上的节点,并对该节点的 left 节点继续调用GetLeftPath函数,然后对该节点的右节点调用DFS算法函数。GetRightPath道理相同。

Java算法实现:

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution { public List<Integer> boundaryOfBinaryTree(TreeNode root) {
List<Integer>list=new ArrayList<>();
if(root==null){
return list;
}
list.add(root.val); GetLeftPath(root.left,list);//add left boundary node and leaves node
GetRightPath(root.right, list);// add right boundary node and leaves node return list;
} public void GetLeftPath(TreeNode left,List<Integer>list){
if(left!=null){
list.add(left.val);// add the left boundary node
if(left.left!=null){
GetLeftPath(left.left, list);
DFS(left.right,list);
}
else{// according to the rule, if the node has no left subtree,then the left path goes to right
GetLeftPath(left.right, list);
}
}
} public void GetRightPath(TreeNode right,List<Integer>list){
if(right!=null){
if(right.right!=null){
DFS(right.left,list);
GetRightPath(right.right, list);
}
else{
//according to the rule,if the node has no right subtree,then the right path goes to left
GetRightPath(right.left, list);
}
list.add(right.val);
}
} public void DFS(TreeNode node,List<Integer>list){
if(node!=null){
if(node.left==null&&node.right==null){
list.add(node.val);
}
else{
DFS(node.left, list);
DFS(node.right,list);
}
}
}
}

LeetCode 545----Boundary of Binary Tree的更多相关文章

  1. [LeetCode] 545. Boundary of Binary Tree 二叉树的边界

    Given a binary tree, return the values of its boundary in anti-clockwise direction starting from roo ...

  2. 545. Boundary of Binary Tree二叉树的边界

    [抄题]: Given a binary tree, return the values of its boundary in anti-clockwise direction starting fr ...

  3. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  4. [LeetCode] Serialize and Deserialize Binary Tree 二叉树的序列化和去序列化

    Serialization is the process of converting a data structure or object into a sequence of bits so tha ...

  5. LeetCode:Minimum Depth of Binary Tree,Maximum Depth of Binary Tree

    LeetCode:Minimum Depth of Binary Tree Given a binary tree, find its minimum depth. The minimum depth ...

  6. [LeetCode] Serialize and Deserialize Binary Tree

    Serialize and Deserialize Binary Tree Serialization is the process of converting a data structure or ...

  7. LeetCode——Serialize and Deserialize Binary Tree

    Description: Serialization is the process of converting a data structure or object into a sequence o ...

  8. 【一天一道LeetCode】#106. Construct Binary Tree from Inorder and Postorder Traversall

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 来源:http ...

  9. LeetCode——Maximum Depth of Binary Tree

    LeetCode--Maximum Depth of Binary Tree Question Given a binary tree, find its maximum depth. The max ...

  10. LeetCode(107) Binary Tree Level Order Traversal II

    题目 Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from l ...

随机推荐

  1. python3模块: json & pickle

    概念: 序列化(Serialization): 将对象的状态信息转换为可以存储或可以通过网络传输的过程,传输的格式可以是JSON,XML等.反序列化就是从存储区域(JSON,XML)读取反序列化对象的 ...

  2. POJ 1036

    #include<iostream> #include<algorithm> #define MAXN 205 using namespace std; struct node ...

  3. JavaScript 函数的4种调用方法

    JavaScript 函数有 4 种调用方式. 每种方式的不同方式在于 this 的初始化. 作为一个函数调用 function myFunction(a, b) { return a * b; } ...

  4. 安卓开发——ListView控件(初始化ListView、列表刷新、长按添加menu)

    前言: ListView——列表,它作为一个非常重要的显示方式,不管是在Web中还是移动平台中,都是一个非常好的.不开或缺的展示信息的工具.在Android中,ListView控件接管了这一重担,在大 ...

  5. python中的sort方法

    Python中的sort()方法用于数组排序,本文以实例形式对此加以详细说明: 一.基本形式 列表有自己的sort方法,其对列表进行原址排序,既然是原址排序,那显然元组不可能拥有这种方法,因为元组是不 ...

  6. WINDOWS 下 修改APACHE 并发数

    某次,配置大型站点.日IP过2W. 刚解析完,就特别卡,每个页面都是慢吞吞的打开的. 至少30秒.但是,3389进入服务器很快,CPU 内存都是几乎为0. 想到WINDOWS下使用的是APACHE,并 ...

  7. jenkins自动部署tomcat

    关于部署的3种思路: 远程部署(jenkins编译部署到远程服务器): 安装ssh插件 ssh插件配置 添加远程jenkins服务器节点: 本地部署(与jenkins在同一服务器): 关于maven构 ...

  8. Nginx的几个常用配置和技巧

    文章列举了几个Nginx常见的,实用的,有趣的配置,希望看过之后能说一句:学到了! 一个站点配置多个域名 server { listen 80; server_name ops-coffee.cn b ...

  9. java学习-GET方式抓取网页(UrlConnection和HttpClient)

    抓取网页其实就是模拟客户端(PC端,手机端...)发送请求,获得响应数据documentation,解析对应数据的过程.---自己理解,错误请告知 一般常用请求方式有GET,POST,HEAD三种 G ...

  10. Pelican+Github博客搭建详细教程

    操作系统:Mac OS / Linux 工具集: 1.Pelican--基于Python的静态网页生成器 2.马克飞象--Evernote出的Markdown文本编辑器 3.GoDaddy--域名供应 ...