Given a binary tree, return the values of its boundary in anti-clockwise direction starting from root.
Boundary includes left boundary, leaves, and right boundary in order without duplicate nodes.

Left boundary is defined as the path from root to the left-most node. Right boundary is defined as the path from root to the right-most node. If the root doesn't have left subtree or right subtree, then the root itself is left boundary or right boundary. Note this definition only applies to the input binary tree, and not applies to any subtrees.

The left-most node is defined as a leaf node you could reach when you always firstly travel to the left subtree if exists. If not, travel to the right subtree. Repeat until you reach a leaf node.

The right-most node is also defined by the same way with left and right exchanged.

Example 1

Input:

  1
\
2
/ \
3 4

Ouput:

[1, 3, 4, 2]

Explanation:

The root doesn't have left subtree, so the root itself is left boundary.

The leaves are node 3 and 4.

The right boundary are node 1,2,4. Note the anti-clockwise direction means you should output reversed right boundary.

So order them in anti-clockwise without duplicates and we have [1,3,4,2].

Example 2

Input:

    ____1_____
/ \
2 3
/ \ /
4 5 6
/ \ / \
7 8 9 10

Ouput:

[1,2,4,7,8,9,10,6,3]

Explanation:

The left boundary are node 1,2,4. (4 is the left-most node according to definition)

The leaves are node 4,7,8,9,10.

The right boundary are node 1,3,6,10. (10 is the right-most node).

So order them in anti-clockwise without duplicate nodes we have [1,2,4,7,8,9,10,6,3].

算法分析

本题的主要难点是如何判断一个节点是在Left boundary上的、在Right boundary 上的还是一颗普通的节点。

为了将叶节点加入List中,首先想到要用 DFS 算法。但如果仅仅使用DFS算法,那么 left boundary 和 right boundary 上的节点就无法加入到List中了。因此,需要设计两个包装函数GetLeftPath 和 GetRightPath,在这两个函数中,通过判断选择递归地使用本身函数或者调用DFS算法函数。GetLeftPath函数默认传入的节点为 Left boundary 上的节点,并对该节点的 left 节点继续调用GetLeftPath函数,然后对该节点的右节点调用DFS算法函数。GetRightPath道理相同。

Java算法实现:

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution { public List<Integer> boundaryOfBinaryTree(TreeNode root) {
List<Integer>list=new ArrayList<>();
if(root==null){
return list;
}
list.add(root.val); GetLeftPath(root.left,list);//add left boundary node and leaves node
GetRightPath(root.right, list);// add right boundary node and leaves node return list;
} public void GetLeftPath(TreeNode left,List<Integer>list){
if(left!=null){
list.add(left.val);// add the left boundary node
if(left.left!=null){
GetLeftPath(left.left, list);
DFS(left.right,list);
}
else{// according to the rule, if the node has no left subtree,then the left path goes to right
GetLeftPath(left.right, list);
}
}
} public void GetRightPath(TreeNode right,List<Integer>list){
if(right!=null){
if(right.right!=null){
DFS(right.left,list);
GetRightPath(right.right, list);
}
else{
//according to the rule,if the node has no right subtree,then the right path goes to left
GetRightPath(right.left, list);
}
list.add(right.val);
}
} public void DFS(TreeNode node,List<Integer>list){
if(node!=null){
if(node.left==null&&node.right==null){
list.add(node.val);
}
else{
DFS(node.left, list);
DFS(node.right,list);
}
}
}
}

LeetCode 545----Boundary of Binary Tree的更多相关文章

  1. [LeetCode] 545. Boundary of Binary Tree 二叉树的边界

    Given a binary tree, return the values of its boundary in anti-clockwise direction starting from roo ...

  2. 545. Boundary of Binary Tree二叉树的边界

    [抄题]: Given a binary tree, return the values of its boundary in anti-clockwise direction starting fr ...

  3. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  4. [LeetCode] Serialize and Deserialize Binary Tree 二叉树的序列化和去序列化

    Serialization is the process of converting a data structure or object into a sequence of bits so tha ...

  5. LeetCode:Minimum Depth of Binary Tree,Maximum Depth of Binary Tree

    LeetCode:Minimum Depth of Binary Tree Given a binary tree, find its minimum depth. The minimum depth ...

  6. [LeetCode] Serialize and Deserialize Binary Tree

    Serialize and Deserialize Binary Tree Serialization is the process of converting a data structure or ...

  7. LeetCode——Serialize and Deserialize Binary Tree

    Description: Serialization is the process of converting a data structure or object into a sequence o ...

  8. 【一天一道LeetCode】#106. Construct Binary Tree from Inorder and Postorder Traversall

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 来源:http ...

  9. LeetCode——Maximum Depth of Binary Tree

    LeetCode--Maximum Depth of Binary Tree Question Given a binary tree, find its maximum depth. The max ...

  10. LeetCode(107) Binary Tree Level Order Traversal II

    题目 Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from l ...

随机推荐

  1. 转的很好的js 入门

    JavaScript概述 JavaScript的历史 1992年Nombas开发出C-minus-minus(C--)的嵌入式脚本语言(最初绑定在CEnvi软件中).后将其改名ScriptEase.( ...

  2. 首次进入页面的时候用js刷新页面

    window.onload = function(){ var url=document.location.href; //获取浏览器访问栏里的地址 if( url.indexOf("tim ...

  3. Centos下用yum命令按照jdk

    一.查看是否已经安装了JDK #查看本机是否已经安装了jdk $ sudo yum list installed | grep java java--openjdk.x86_64 :.el7_6 @u ...

  4. Requests库入门实例

    爬虫入门5个实例 实例1:京东商品页面的爬取 import requests def getHTMLText(url): try: r = requests.get(url,timeout = 30) ...

  5. Linux CentOS7系统中ssh的用法

    大家都知道,公司买上服务器,不可能实时在线操作虚拟机,也没有那个时间和精力登录到公司的云服务商官网进行操作,一来不安全,二来也效率不高. 如果是购买的虚拟主机,你可以使用ftp进行本地程序文件传输和从 ...

  6. 快捷键&小技巧

    shift+鼠标滚轮:实现左右移动 alt+鼠标左键双击:打开属性 chrome中在F12下的Element中,可以先选中某一项,可以直接按住F2进行编辑 chrome中element的右下方我们可以 ...

  7. PHP 批量获取 百度搜索结果 网址列表

    <?php set_time_limit(0); function curl($url){ $ch = curl_init(); curl_setopt($ch, CURLOPT_URL, $u ...

  8. ZigBee 学习资源

    1.雪帕的主页 http://home.cnblogs.com/u/yqh2007/ 2.刘志鹏的主页 http://www.cnblogs.com/hustlzp/archive/2011/02/1 ...

  9. 关于Class中的Signature属性

    1.Signature属性:https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.7.9 2.ClassSigna ...

  10. CSS学习笔记(基础篇)

    CSS概念 CSS 指层叠样式表 (Cascading Style Sheets)(级联样式表) Css是用来美化html标签的,相当于页面化妆. 样式表书写位置: <head> < ...