hihoCoder #1185 : 连通性·三(强联通分量+拓扑排序)
#1185 : 连通性·三
描述
暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家。今天一大早,约翰因为有事要出去,就拜托小Hi和小Ho忙帮放牧。
约翰家一共有N个草场,每个草场有容量为W[i]的牧草,N个草场之间有M条单向的路径。
小Hi和小Ho需要将牛羊群赶到草场上,当他们吃完一个草场牧草后,继续前往其他草场。当没有可以到达的草场或是能够到达的草场都已经被吃光了之后,小hi和小Ho就把牛羊群赶回家。
一开始小Hi和小Ho在1号草场,在回家之前,牛羊群最多能吃掉多少牧草?
举个例子:

图中每个点表示一个草场,上部分数字表示编号,下部分表示草场的牧草数量w。
在1吃完草之后,小Hi和小Ho可以选择把牛羊群赶到2或者3,假设小Hi和小Ho把牛羊群赶到2:
吃完草场2之后,只能到草场4,当4吃完后没有可以到达的草场,所以小Hi和小Ho就把牛羊群赶回家。
若选择从1到3,则可以到达5,6:
选择5的话,吃完之后只能直接回家。若选择6,还可以再通过6回到3,再到5。
所以该图可以选择的路线有3条:
1->2->4 total: 11
1->3->5 total: 9
1->3->6->3->5: total: 13
所以最多能够吃到的牧草数量为13。
本题改编自USACO月赛金组
输入
第1行:2个正整数,N,M。表示点的数量N,边的数量M。1≤N≤20,000, 1≤M≤100,000
第2行:N个正整数,第i个整数表示第i个牧场的草量w[i]。1≤w[i]≤100,000
第3..M+2行:2个正整数,u,v。表示存在一条从u到v的单向路径。1≤u,v≤N
输出
第1行:1个整数,最多能够吃到的牧草数量。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
using namespace std;
const int N=2e4+; vector<int>v[N];
vector<int>gra[N];
stack<int>sk;
int n,m,cnt,num,ans;
int val[N],low[N],dfn[N],fa[N],sum[N],indeg[N],dp[N];
bool vis[N]; //求出强连通分量
void tarjan(int u){
low[u]=dfn[u]=++cnt;
sk.push(u);
for(int i=;i<v[u].size();i++){
int t=v[u][i];
if(!dfn[t]){
tarjan(t);
low[u]=min(low[u],low[t]);
}
else if(!fa[t]) low[u]=min(low[u],dfn[t]);
}
if(low[u]==dfn[u]){
num++;
while(!sk.empty()){
int t=sk.top();
sk.pop();
fa[t]=num;
sum[num]+=val[t];
if(t==u) break;
}
}
} //拓扑排序求最大价值
int topo(){
queue<int>q;
for(int i=;i<=num;i++){
if(indeg[i]==)
q.push(i);
}
int ans=;
while(!q.empty()){
int k=q.front();
q.pop();
dp[k]+=sum[k];
ans=max(dp[k],ans);
for(int i=;i<gra[k].size();i++){
int t=gra[k][i];
indeg[t]--;
dp[t]=max(dp[t],dp[k]);
if(indeg[t]==)
q.push(t);
}
}
return ans;
} int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&val[i]);
for(int i=;i<=m;i++){
int a,b;
scanf("%d%d",&a,&b);
v[a].push_back(b);
}
tarjan(); //起点是1
//建新图
for(int i=;i<=n;i++){
if(fa[i]==) continue;
for(int j=;j<v[i].size();j++){
int t=v[i][j];
if(fa[i]!=fa[t])
gra[fa[i]].push_back(fa[t]);
}
}
//计算入度
for(int i=;i<=num;i++){
for(int j=;j<gra[i].size();j++){
int t=gra[i][j];
indeg[t]++;
}
}
//利用拓扑排序算出答案
printf("%d\n",topo());
return ;
}
hihoCoder #1185 : 连通性·三(强联通分量+拓扑排序)的更多相关文章
- hihoCoder 1185 连通性·三(Tarjan缩点+暴力DFS)
#1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...
- HihoCoder 1185 : 连通性·三(强连通缩点)
连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出去,就拜托小Hi ...
- POJ 2762 Going from u to v or from v to u?(强联通,拓扑排序)
id=2762">http://poj.org/problem?id=2762 Going from u to v or from v to u? Time Limit: 2000MS ...
- POJ 2186-Popular Cows (图论-强联通分量Korasaju算法)
题目链接:http://poj.org/problem?id=2186 题目大意:有n头牛和m对关系, 每一对关系有两个数(a, b)代表a牛认为b牛是“受欢迎”的,且这种关系具有传递性, 如果a牛认 ...
- CodeForces 1213F (强联通分量分解+拓扑排序)
传送门 •题意 给你两个数组 p,q ,分别存放 1~n 的某个全排列: 让你根据这两个数组构造一个字符串 S,要求: (1)$\forall i \in [1,n-1],S_{pi}\leq S _ ...
- Kosaraju算法---强联通分量
1.基础知识 所需结构:原图.反向图(若在原图中存在vi到vj有向边,在反向图中就变为vj到vi的有向边).标记数组(标记是否遍历过).一个栈(或记录顶点离开时间的数组). 算法描叙: :对 ...
- [CF #236 (Div. 2) E] Strictly Positive Matrix(强联通分量)
题目:http://codeforces.com/contest/402/problem/E 题意:给你一个矩阵a,判断是否存在k,使得a^k这个矩阵全部元素都大于0 分析:把矩阵当作01矩阵,超过1 ...
- 强联通分量-tarjan算法
定义:在一张有向图中,两个点可以相互到达,则称这两个点强连通:一张有向图上任意两个点可以相互到达,则称这张图为强连通图:非强连通图有极大的强连通子图,成为强联通分量. 如图,{1},{6}分别是一个强 ...
- POJ 2186 强联通分量
点击打开链接 题意:牛A喜欢牛B,若牛B喜欢牛C,则牛A喜欢牛C,问最后多少牛被其它全部牛喜欢 思路:用强联通分量进行缩点,最后形成的图是有向无环图DAG.而拓扑序的值为DAG的长度,则加一,可是最后 ...
随机推荐
- 栈(C语言实现)
栈是一种线性数据结构,顺序可能是 LIFO(后进先出)或 FILO(先进先出). 堆栈主要有三个基本操作: 1.push,把元素压入栈 2.pop,从栈中弹出元素(同时从栈中移除),最后加入的第一个被 ...
- Tomcat性能调优及JVM内存工作原理
Java性能优化方向:代码运算性能.内存回收.应用配置. 注:影响Java程序主要原因是垃圾回收,下面会重点介绍这方面 代码层优化:避免过多循环嵌套.调用和复杂逻辑.Tomcat调优主要内容如下:1. ...
- P3275 [SCOI2011]糖果 && 差分约束(二)
学习完了差分约束是否有解, 现在我们学习求解最大解和最小解 首先我们回想一下是否有解的求解过程, 不难发现最后跑出来任意两点的最短路关系即为这两元素的最短路关系. 即: 最后的最短路蕴含了所有元素之间 ...
- 两步建立 ssh 反向隧道
因为需要在寝室访问实验室的内部网络,刚好自己购买了阿里云,因此,可以远端干活了,mark下方法: 第一步:在内网的服务器上,使用ssh 命令建立反向隧道 publicUserName@publicIp ...
- Angular5基本入门
基本环境安装 首先,确定安装了nodejs与npm,angular 5要求node版本在6.9.x以上.npm版本在 3.x.x以上: 1.安装@angular/cli npm install -g ...
- 【BZOJ】1828: [Usaco2010 Mar]balloc 农场分配(经典贪心)
[算法]贪心+线段树 [题意]给定n个数字ci,m个区间[a,b](1<=a,b<=10^5),每个位置最多被ci个区间覆盖,求最多选择多少区间. 附加退化问题:全部ci=1,即求最多的不 ...
- 浅谈欧几里得算法求最大公约数(GCD)的原理及简单应用
一.欧几里得算法及其证明 1.定义: 欧几里得算法又称辗转相除法,用于求两数的最大公约数,计算公式为GCD(a,b)=GCD(b,a%b): 2.证明: 设x为两整数a,b(a>=b)的最大公约 ...
- HDU 5532 Almost Sorted Array (最长非递减子序列)
题目链接 Problem Description We are all familiar with sorting algorithms: quick sort, merge sort, heap s ...
- 51、多线程创建的三种方式之实现Callable接口
实现Callable接口创建线程 Callable接口是在jdk5版本中加入的,这个接口在java.util.concurrent包下面,与其他两种方式不同的地方在于使用Callable接口创建的线程 ...
- C# Json字符串反序列化
using DevComponents.DotNetBar; using MyControl; using Newtonsoft.Json; using System; using System.Co ...