InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]
在莫烦Python教程的“Dropout 解决 overfitting”一节中,出现错误如下:
InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]
runfile('E:/python/kerasTest/tfDropoutTest9.py', wdir='E:/python/kerasTest')
C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\sklearn\cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
"This module will be removed in 0.20.", DeprecationWarning) runfile('E:/python/kerasTest/tfDropoutTest9.py', wdir='E:/python/kerasTest')
Traceback (most recent call last): File "<ipython-input-2-64f3a3bcd083>", line 1, in <module>
runfile('E:/python/kerasTest/tfDropoutTest9.py', wdir='E:/python/kerasTest') File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 710, in runfile
execfile(filename, namespace) File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 101, in execfile
exec(compile(f.read(), filename, 'exec'), namespace) File "E:/python/kerasTest/tfDropoutTest9.py", line 67, in <module>
train_result = sess.run(merged,feed_dict={xs:X_train,ys:y_train,keep_prob:1}) File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 895, in run
run_metadata_ptr) File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1128, in _run
feed_dict_tensor, options, run_metadata) File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1344, in _do_run
options, run_metadata) File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1363, in _do_call
raise type(e)(node_def, op, message) InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[?,10], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]] Caused by op 'Placeholder_1', defined at:
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 241, in <module>
main()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 237, in main
kernel.start()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\kernelapp.py", line 477, in start
ioloop.IOLoop.instance().start()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
super(ZMQIOLoop, self).start()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tornado\ioloop.py", line 888, in start
handler_func(fd_obj, events)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events
self._handle_recv()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
self._run_callback(callback, msg)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
callback(*args, **kwargs)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 235, in dispatch_shell
handler(stream, idents, msg)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\zmqshell.py", line 533, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2698, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2808, in run_ast_nodes
if self.run_code(code, result):
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-1-64f3a3bcd083>", line 1, in <module>
runfile('E:/python/kerasTest/tfDropoutTest9.py', wdir='E:/python/kerasTest')
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 710, in runfile
execfile(filename, namespace)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 101, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "E:/python/kerasTest/tfDropoutTest9.py", line 39, in <module>
ys = tf.placeholder(tf.float32,[None,10])
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1680, in placeholder
return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 4105, in _placeholder
"Placeholder", dtype=dtype, shape=shape, name=name)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 3160, in create_op
op_def=op_def)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 1625, in __init__
self._traceback = self._graph._extract_stack() InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[?,10], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
代码如下:
import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelBinarizer #load data
digits = load_digits()
X = digits.data#从0到9的图片
y = digits.target
y =LabelBinarizer().fit_transform(y)
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=.3) def add_layer(inputs,in_size,out_size,layer_name,activation_function=None):
#add one more layer and return the output of this layer
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
Wx_plus_b = tf.nn.dropout(Wx_plus_b,keep_prob)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
tf.summary.histogram(layer_name+'/outputs',outputs)
return outputs xs = tf.placeholder(tf.float32,[None,64])#8*8
ys = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32) #add output layer
l1 = add_layer(xs,64,50,'l1',activation_function=tf.nn.tanh)
prediction = add_layer(l1,50,10,'l2',activation_function=tf.nn.softmax) #the loss between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
reduction_indices=[1]))#loss
tf.summary.scalar('loss',cross_entropy)
train_step = tf.train.GradientDescentOptimizer(0.6).minimize(cross_entropy) sess = tf.Session()
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter("logs/train",sess.graph)
test_writer = tf.summary.FileWriter("logs/test",sess.graph) sess.run(tf.global_variables_initializer()) for i in range(500):
sess.run(train_step,feed_dict={xs:X_train,ys:y_train,keep_prob:0.5})
if i % 50 == 0:
train_result = sess.run(merged,feed_dict={xs:X_train,ys:y_train,keep_prob:1})
test_result = sess.run(merged,feed_dict={xs:X_test,ys:y_test,keep_prob:1})
train_writer.add_summary(train_result,i)
test_writer.add_summary(test_result,i)
原因:
在feed_dict中没有加入keep_prob的key和value
sess.run(train_step,feed_dict={xs:X_train,ys:y_train,keep_prob:0.5})中,没有写入keep_prob:0.5
造成feed_dict和placeholder的对应问题,但改正后,仍报该错误。反复检查了几遍,并没有发现问题。
最后实在无解,关闭了Spyder和anaconda,再打开anaconda和Spyder,居然可以正常运行了。。
但是也只是第一次可以正常运行,当删了生成的log文件,再次运行时,仍报该错误..至于为什么第二次运行就又报错仍未解决。
虽然问题不大,但是改了feed_dict后,问题还是没能解决,被困扰了一天,因此记录一下。
InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]的更多相关文章
- tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'x_1' with dtype float and shape [?,227,227,3]
记一次超级蠢超级折磨我的bug. 报错内容: tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a ...
- Tensorflow报错:InvalidArgumentError: You must feed a value for placeholder tensor 'input_y' with dtype
此错误神奇之处是每次第一次运行不会报错,第二次.第三次第四次....就都报错了.关掉重启,又不报错了,运行完再运行一次立马报错!搞笑! 折磨了我半天,终于被我给解决了! 问题解决来源于这边博客:htt ...
- 关于placeholder中 文字添加换行 用转义字符 代替<br>
今天遇到一个问题 UI给的效果图中 文本域的提示文字 是两行显示, 于是就想到placeholder中能否解析html标签, 尝试后发现并无卵用, 经过调查后发现 可以用转义字符代替<br> ...
- typeError:The value of a feed cannot be a tf.Tensor object.Acceptable feed values include Python scalars,strings,lists.numpy ndarrays,or TensorHandles.For reference.the tensor object was Tensor...
如上贴出了:错误信息和错误代码. 这个问题困扰了自己两天,报错大概是说输入的数据和接受的格式不一样,不能作为tensor. 后来问了大神,原因出在tf.reshape(),因为网络训练时用placeh ...
- InvalidArgumentError (see above for traceback): Assign requires shapes of both tensors to match. lhs shape= [2048,38] rhs shape= [2048,2]
做tensorflow object detection 中,清空下checkpoint就可以啦
- tensorflow ValueError: Cannot feed value of shape (5000,) for Tensor 'output:0', which has shape '(?, 10)'
提供的训练数据和定义的模型之间的维度不对应. 在MNIST手写数字识别时,在 mnist = input_data.read_data_sets("MNIST_data/") 中, ...
- 实战Google深度学习框架-C3-TensorFlow入门
第三章:TensorFlow入门 TensorFlow存在计算模型,数据模型和运算模型(本文用TF代表TensorFlow) 3.1 计算模型-计算图 3.1.1 计算图的概念 TensorFlow这 ...
- 使用TensorFlow的卷积神经网络识别自己的单个手写数字,填坑总结
折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNI ...
- [2] TensorFlow 向前传播算法(forward-propagation)与反向传播算法(back-propagation)
TensorFlow Playground http://playground.tensorflow.org 帮助更好的理解,游乐场Playground可以实现可视化训练过程的工具 TensorFlo ...
随机推荐
- target属性用于返回最初触发事件的DOM元素。
target属性用于返回最初触发事件的DOM元素. 在HTML文档中,我们为<p>元素绑定点击事件("click"),由于DOM元素的事件冒泡机制,我们点击<p& ...
- Json对象与Json字符串的转化、JSON字符串与Java对象的转换(转)
一.Json对象与Json字符串的转化 1.jQuery插件支持的转换方式: $.parseJSON( jsonstr ); //jQuery.parseJSON(jsonstr),可以将json字符 ...
- 图片轮播,信手拈来(jquery)
制作图片轮播,可以说是js或者jquery学习者应该掌握的技巧.但惭愧的是本菜之前一直一知半解,这回抽了半天多总结了下分享给大家.虽然标题比较吹牛,但目的是希望大家看了之后制作图片轮播会非常迅速. 首 ...
- pygrib学习
pygrib-2.0.3/docs/index.html 导入pygrib模块 >>> import pygrib 打开grib文件,获取grib消息迭代器 >>> ...
- 基于Vue+Spring MVC+MyBatis+Shiro+Dubbo开发的分布式后台管理系统
本文项目代码: 服务端:https://github.com/lining90567/dubbo-demo-server 前端:https://github.com/lining90567/dubbo ...
- Unity扩展编辑器五
扩展系统自带组件Inspector 可以在系统摄像机组建上添加一个按钮,这样就可以单独处理逻辑了
- alibaba/Sentinel 分布式 系统流量防卫兵
Sentinel: 分布式系统的流量防卫兵 Sentinel 是什么? 随着微服务的流行,服务和服务之间的稳定性变得越来越重要.Sentinel 以流量为切入点,从流量控制.熔断降级.系统负载保护等多 ...
- Java 浅拷贝 深拷贝
两者区别主要在于引用数据类型的属性,对于基本数据类型采用的是值传递,所以两者一样: 对于浅拷贝,引用数据类型只会进行引用传递,即复制一份引用值(内存地址)给新对象,一个对象的变化会影响到另一个的引用属 ...
- 【树莓派】crontab的两个问题
1,/var/log下面,没有cron.log日志 root@raspberrypi:/# nano /etc/rsyslog.conf …… …… ############### #### RULE ...
- Streamr助你掌控自己的数据(3)——教你在Streamr市场上发布数据
博客说明 所有刊发内容均可转载但是需要注明出处. 教你在Streamr市场上发布数据 本系列文档主要介绍怎么通过Streamr管理自己的DATA,整个系列包括三篇教程文档,分别是:教你5分钟上传数据至 ...