InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]
在莫烦Python教程的“Dropout 解决 overfitting”一节中,出现错误如下:
InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]
runfile('E:/python/kerasTest/tfDropoutTest9.py', wdir='E:/python/kerasTest')
C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\sklearn\cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
"This module will be removed in 0.20.", DeprecationWarning)
runfile('E:/python/kerasTest/tfDropoutTest9.py', wdir='E:/python/kerasTest')
Traceback (most recent call last):
File "<ipython-input-2-64f3a3bcd083>", line 1, in <module>
runfile('E:/python/kerasTest/tfDropoutTest9.py', wdir='E:/python/kerasTest')
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 710, in runfile
execfile(filename, namespace)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 101, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "E:/python/kerasTest/tfDropoutTest9.py", line 67, in <module>
train_result = sess.run(merged,feed_dict={xs:X_train,ys:y_train,keep_prob:1})
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 895, in run
run_metadata_ptr)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1128, in _run
feed_dict_tensor, options, run_metadata)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1344, in _do_run
options, run_metadata)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1363, in _do_call
raise type(e)(node_def, op, message)
InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[?,10], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
Caused by op 'Placeholder_1', defined at:
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 241, in <module>
main()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 237, in main
kernel.start()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\kernelapp.py", line 477, in start
ioloop.IOLoop.instance().start()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
super(ZMQIOLoop, self).start()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tornado\ioloop.py", line 888, in start
handler_func(fd_obj, events)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events
self._handle_recv()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
self._run_callback(callback, msg)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
callback(*args, **kwargs)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 235, in dispatch_shell
handler(stream, idents, msg)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\zmqshell.py", line 533, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2698, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2808, in run_ast_nodes
if self.run_code(code, result):
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-1-64f3a3bcd083>", line 1, in <module>
runfile('E:/python/kerasTest/tfDropoutTest9.py', wdir='E:/python/kerasTest')
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 710, in runfile
execfile(filename, namespace)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 101, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "E:/python/kerasTest/tfDropoutTest9.py", line 39, in <module>
ys = tf.placeholder(tf.float32,[None,10])
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1680, in placeholder
return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 4105, in _placeholder
"Placeholder", dtype=dtype, shape=shape, name=name)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 3160, in create_op
op_def=op_def)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 1625, in __init__
self._traceback = self._graph._extract_stack()
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[?,10], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
代码如下:
import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelBinarizer #load data
digits = load_digits()
X = digits.data#从0到9的图片
y = digits.target
y =LabelBinarizer().fit_transform(y)
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=.3) def add_layer(inputs,in_size,out_size,layer_name,activation_function=None):
#add one more layer and return the output of this layer
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
Wx_plus_b = tf.nn.dropout(Wx_plus_b,keep_prob)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
tf.summary.histogram(layer_name+'/outputs',outputs)
return outputs xs = tf.placeholder(tf.float32,[None,64])#8*8
ys = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32) #add output layer
l1 = add_layer(xs,64,50,'l1',activation_function=tf.nn.tanh)
prediction = add_layer(l1,50,10,'l2',activation_function=tf.nn.softmax) #the loss between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
reduction_indices=[1]))#loss
tf.summary.scalar('loss',cross_entropy)
train_step = tf.train.GradientDescentOptimizer(0.6).minimize(cross_entropy) sess = tf.Session()
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter("logs/train",sess.graph)
test_writer = tf.summary.FileWriter("logs/test",sess.graph) sess.run(tf.global_variables_initializer()) for i in range(500):
sess.run(train_step,feed_dict={xs:X_train,ys:y_train,keep_prob:0.5})
if i % 50 == 0:
train_result = sess.run(merged,feed_dict={xs:X_train,ys:y_train,keep_prob:1})
test_result = sess.run(merged,feed_dict={xs:X_test,ys:y_test,keep_prob:1})
train_writer.add_summary(train_result,i)
test_writer.add_summary(test_result,i)
原因:
在feed_dict中没有加入keep_prob的key和value
sess.run(train_step,feed_dict={xs:X_train,ys:y_train,keep_prob:0.5})中,没有写入keep_prob:0.5
造成feed_dict和placeholder的对应问题,但改正后,仍报该错误。反复检查了几遍,并没有发现问题。
最后实在无解,关闭了Spyder和anaconda,再打开anaconda和Spyder,居然可以正常运行了。。
但是也只是第一次可以正常运行,当删了生成的log文件,再次运行时,仍报该错误..至于为什么第二次运行就又报错仍未解决。
虽然问题不大,但是改了feed_dict后,问题还是没能解决,被困扰了一天,因此记录一下。
InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]的更多相关文章
- tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'x_1' with dtype float and shape [?,227,227,3]
记一次超级蠢超级折磨我的bug. 报错内容: tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a ...
- Tensorflow报错:InvalidArgumentError: You must feed a value for placeholder tensor 'input_y' with dtype
此错误神奇之处是每次第一次运行不会报错,第二次.第三次第四次....就都报错了.关掉重启,又不报错了,运行完再运行一次立马报错!搞笑! 折磨了我半天,终于被我给解决了! 问题解决来源于这边博客:htt ...
- 关于placeholder中 文字添加换行 用转义字符 代替<br>
今天遇到一个问题 UI给的效果图中 文本域的提示文字 是两行显示, 于是就想到placeholder中能否解析html标签, 尝试后发现并无卵用, 经过调查后发现 可以用转义字符代替<br> ...
- typeError:The value of a feed cannot be a tf.Tensor object.Acceptable feed values include Python scalars,strings,lists.numpy ndarrays,or TensorHandles.For reference.the tensor object was Tensor...
如上贴出了:错误信息和错误代码. 这个问题困扰了自己两天,报错大概是说输入的数据和接受的格式不一样,不能作为tensor. 后来问了大神,原因出在tf.reshape(),因为网络训练时用placeh ...
- InvalidArgumentError (see above for traceback): Assign requires shapes of both tensors to match. lhs shape= [2048,38] rhs shape= [2048,2]
做tensorflow object detection 中,清空下checkpoint就可以啦
- tensorflow ValueError: Cannot feed value of shape (5000,) for Tensor 'output:0', which has shape '(?, 10)'
提供的训练数据和定义的模型之间的维度不对应. 在MNIST手写数字识别时,在 mnist = input_data.read_data_sets("MNIST_data/") 中, ...
- 实战Google深度学习框架-C3-TensorFlow入门
第三章:TensorFlow入门 TensorFlow存在计算模型,数据模型和运算模型(本文用TF代表TensorFlow) 3.1 计算模型-计算图 3.1.1 计算图的概念 TensorFlow这 ...
- 使用TensorFlow的卷积神经网络识别自己的单个手写数字,填坑总结
折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNI ...
- [2] TensorFlow 向前传播算法(forward-propagation)与反向传播算法(back-propagation)
TensorFlow Playground http://playground.tensorflow.org 帮助更好的理解,游乐场Playground可以实现可视化训练过程的工具 TensorFlo ...
随机推荐
- python模块-datetime模块
上面一篇已经讲了time模块,再来学习datetime模块. datetime主要有datetime.timedelta.time.date这4个子模块. a.datetime常用的函数(dateti ...
- AutomaticInteger中CAS运用分析
摘要 在接触CAS的时候虽然对它流程了解了但是对其如何解决并发问题还是一直有疑问的,所以在就选择了java中典型线程安全的AtomicInteger类进行了源码的分析. CAS简介 CAS的全称为co ...
- Netty源码分析第3章(客户端接入流程)---->第3节: NioSocketChannel的创建
Netty源码分析第三章: 客户端接入流程 第三节: NioSocketChannel的创建 回到上一小节的read()方法: public void read() { //必须是NioEventLo ...
- 方正 ignb路由器设置备份(自用笔记)
192.168.15.96255.255.255.0192.168.15.1219.232.46.61219.141.136.10
- hive-2.3.3安装
1.下载hive-2.3.3 下载地址 http://archive.apache.org/dist/hive/hive-2.3.3 解压,编辑/etc/profile添加HIVE_HOME,保存文件 ...
- 文件上传到tomcat服务器 commons-fileupload的详细介绍与使用
三个类:DiskFileUpload.FileItem和FileUploadException.这三个类全部位于org.apache.commons.fileupload包中. 首先需要说明一下for ...
- 关于echart柱形图的使用问题
关于一个数据对应两个值的问题 series: [{ name: '数量(个)', type: 'bar', barWidth: '30%', barGap: , //两个数据条没有间距 data: y ...
- spring冲刺阶段之团队工作总结
一.小组成员: 王俊凯(项目经理) 罗林杰(产品负责人) 王逸辉(Master) 罗凯杰 二.任务分配情况 王俊凯:生成题目的代码编写并提出编写意见 罗林杰:负责把按钮和界面内容连接到代码上及主要代码 ...
- Answer the questions(回答自己的问题)
第一章: 问题:我们现在学了这个专业,如果想全面去了解,应该还要学习哪些课程? 回答:其实软件工程只是一个比较大的范畴,以后如果要出去工作,我们还要细分,比如说开发安卓,开发游戏,web架构方面等很多 ...
- 24_IO_第24天(转换流、缓冲流)_讲义
今日内容介绍 1.转换流 2.缓冲流 01转换流概述 * A: 转换流概述 * a: 转换流概述 * OutputStreamWriter 是字符流通向字节流的桥梁:可使用指定的字符编码表,将要写入流 ...