STM32F4: Generating parallel signals with the FSMC

The goal: The memory controller can be used to generate a "generic" 16-bit parallel data stream with clock. Address generation will be disregarded, as well as other control signals dedicated to memory chips.

It must be noted that the STM32F40x and STM32F41x have the FSMC (static memories), while theSTM32F42x and STM32F43x have the FMC (static and dynamic memories). The differences between the two concern the support of SDRAM (dynamic RAM), address and data write FIFOs (both data and address, instead of data only for FSMC, and 16-word long instead of 2-word long only for FSMC), and the 32-bit wide data bus for FMC (See [1]).

Set pins (1st attempt)

Only data bus FSMC_D[15:0] and clock FSMC_CLK will be used (set as alternate function). The other pins are set as standard GPIOs (general purpose output).

FSMC is alternate function 12 according to the datasheet (See "Table 9. Alternate function mapping" in [2]).

/* PD: 0, 1, 3, 8, 9, 10, 14, 15 -> alternate function (0b10) */
GPIOD->MODER = 0xA56A559A;
GPIOD->AFR[] = 0xCCCCCCCC; /* FSMC = AF12 (0xC) */
GPIOD->AFR[] = 0xCCCCCCCC;
/* PE: 7, 8, 9, 10, 11, 12, 13, 14, 15 -> alternate function (0b10) */
GPIOE->MODER = 0xAAAA9555;
GPIOE->AFR[] = 0xCCCCCCCC;
GPIOE->AFR[] = 0xCCCCCCCC;

FSMC setup/init (1st attempt)

Be careful of the the wicked register map documentation of the FSMC block:

This is very misleading, since all other table are ordered as found in memory, but not here.

/* PSRAM, synchronous (burst), non-multiplexed */
/* control register */
FSMC_Bank1->BTCR[] = FSMC_BCR1_CBURSTRW | FSMC_BCR1_WAITPOL | FSMC_BCR1_BURSTEN | FSMC_BCR1_MWID_0 | FSMC_BCR1_WREN | FSMC_BCR1_MTYP_0 /* PSRAM */ | FSMC_BCR1_MBKEN;
/* timing register */
FSMC_Bank1->BTCR[] = FSMC_BTR1_CLKDIV_1 /* div 3 */ ;

It is noticable that the timing are all set to 0, except the clock.

Result (1st attempt)

The code writing to the FSMC is using an array and simulate a sequencial memory request, in order to take advantage of the burst mode.

volatile uint16_t* fsmc = (uint16_t*)0x60000000;

for(uint32_t i=; i<(sizeof(bitstream_bin)/); i++) {
uint16_t w = ((uint16_t*)bitstream_bin)[i];
fsmc[i] = w;
}

The clock is ~54MHz, but the maximum clock is HCLK/2 = 168/2=84MHz. Unfortunately, my oscilloscope is too slow for this.

At least, 4 clock cycles are required to write one data. Data latency (DATLAT lowest value is 2). There is one cyle to give the address, two cyle of latency, one cyle for give the data.

At max FSMC speed (~84MHz), after dividing the clock by 4, the 16-bit parallel transmission would only be ~20MHz.

Bursts are possible up to 32 bits (two 16-bit data words). When using this feature, two data words are send for each address, hence more data is sent, but the clock is hard to use: 3 ticks for the (empty) address, 1 tick for the first data, 1 tick for the second data (5 cycles for 2 data, ~30MHz max).

Set pins (2nd attempt)

/* PD: 0, 1, 8, 9, 10, 14, 15 -> alternate function (0b10) */
GPIOD->MODER = 0xA56A555A;
GPIOD->AFR[] = 0xCCCCCCCC; /* FSMC = AF12 (0xC) */
GPIOD->AFR[] = 0xCCCCCCCC;
/* PE: 7, 8, 9, 10, 11, 12, 13, 14, 15 -> alternate function (0b10) */
GPIOE->MODER = 0xAAAA9555;
GPIOE->AFR[] = 0xCCCCCCCC;
GPIOE->AFR[] = 0xCCCCCCCC;
/* PB: 7 -> AF */
GPIOB->MODER = 0x55551555;
GPIOB->AFR[] = 0xCCCCCCCC;
GPIOB->AFR[] = 0xCCCCCCCC;

FSMC setup/init (2nd attempt)

/* NOR flash, asynchronous, multiplexed */
/* control register */
FSMC_Bank1->BTCR[] = FSMC_BCR1_WREN | FSMC_BCR1_FACCEN | FSMC_BCR1_MWID_0 /* 16-bit */ | FSMC_BCR1_MTYP_1 /* NOR flash */ | FSMC_BCR1_MUXEN | FSMC_BCR1_MBKEN;
/* timing register */
FSMC_Bank1->BTCR[] = FSMC_BTR1_CLKDIV_0 | FSMC_BTR1_DATAST_0 | FSMC_BTR1_ADDHLD_0 | FSMC_BTR1_ADDSET_1;

Result (2nd attempt)

We want to use the NADV signal as a new clock CLK.

volatile uint16_t* fsmc = (uint16_t*)0x60000000;
uint16_t w[] = {
0xFFFF, 0x0000, 0xFFFF, 0x0000,
0xFFFF, 0x0000, 0xFFFF, 0x0000}; for(uint32_t i=;i<;i++) {
fsmc[] = w[i];
}

We write to the same address in order to force a new memory transaction and cycle NADV.

The problem is that the data bus is updated after the positive edge of the NADV "clock". This issue can be overcome by multiplexing the address and data bus and put the data value as address. The ADDSET value is also increased in order to have a more balanced clock (ADDSET=3).

for(uint32_t i=;i<;i++) {
uint16_t v = w[i];
fsmc[v] = v;
}

Unfortately, the overall clock speed decreased because the address "trick".

Conclusion

A "nice looking" 16-bit parallel signal with clock can be generated at approx. 16MHz using the memory controller (FSMC) in asynchronous NOR Flash mode. 20MHz can be achieved with an external clock divider (div 4) in synchronous PSRAM mode. If the clock edge can be aligned with the data edge, 27MHz is possible from SRAM.

Note: the FMC (Flexible Memory Controller, also supporting SDRAM) in SDRAM mode can generate a synchronous burst of one data per clock. In this case, 84MHz is possible in theory. I haven't the hardware to test it.

STM32F4: Generating parallel signals with the FSMC的更多相关文章

  1. STM32F4: GENERATING A SINE WAVE

    http://amarkham.com/?p=49

  2. Flexible implementation of a system management mode (SMM) in a processor

    A system management mode (SMM) of operating a processor includes only a basic set of hardwired hooks ...

  3. PMP用语集

    AC actual cost 实际成本 ACWP actual cost of work performed 已完工作实际成本 BAC budget at completion 完工预算 BCWP b ...

  4. 论文翻译:2021_DeepFilterNet: A Low Complexity Speech Enhancement Framework for Full-Band Audio based on Deep Filtering

    论文地址:DeepFilterNet:基于深度滤波的全频带音频低复杂度语音增强框架 论文代码:https://github.com/ Rikorose/DeepFilterNet 引用:Schröte ...

  5. STM32F4—fsmc的配置步骤

    0:开启GPIO时钟和FSMC时钟 1:配置GPIO 2:配置片选控制寄存器 3:配置片选时序寄存器 4:配置写入时序寄存器 GPIO_InitTypeDef GPIO_InitStructure;/ ...

  6. STM32F4 SPI with DMA

    STM32F4 SPI with DMA A few people have requested code, so I thought I’d post the code showing how I’ ...

  7. Generating Complex Procedural Terrains Using GPU

    前言:感慨于居然不用tesselation也可以产生这么复杂的地形,当然致命的那个关于不能有洞的缺陷还是没有办法,但是这个赶脚生成的已经足够好了,再加上其它模型估 计效果还是比较震撼的.总之好文共分享 ...

  8. GNU Parallel Tutorial

    GNU Parallel Tutorial Prerequisites Input sources A single input source Multiple input sources Linki ...

  9. Massively parallel supercomputer

    A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures ba ...

随机推荐

  1. javascritpt创建对象

    javascript添加对象示例: <script> person=new Object(); person.firstname="Bill"; person.last ...

  2. 训练赛第二场E题 Cottage Village

    题目大意:在一条X轴上,有若干个正方形,并且保证这些正方形的中心都在X轴上,然后输入n个正方形的中心的X坐标,和正方形的边长,现在要再插入一个正方形,要求是,新插入的正方形至少要有一条边与原来的正方形 ...

  3. G. (Zero XOR Subset)-less(线性基)

    题目链接:http://codeforces.com/contest/1101/problem/G 题目大意:给你n个数,然后让你把这n个数分成尽可能多的集合,要求,每个集合的值看做这个集合所有元素的 ...

  4. RabbitMQ消费端消息的获取方式(.Net Core)

    1[短链接]:BasicGet(String queue, Boolean autoAck) 通过request的方式独自去获取消息,断开式,一次次获取,如果返回null,则说明队列中没有消息. 隐患 ...

  5. Palindrome Partitioning I & II

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

  6. sh-copy-id命令报错:-bash: ssh-copy-id: command not found

    参考网址:http://www.bubuko.com/infodetail-1662159.html yum -y install openssh-clients

  7. thymeleaf:访问静态方法

    <p class="left tel" th:if="${#strings.startsWith(T(net.common.util.tool.common.Req ...

  8. elasticsearch6.3.2之x-pack6.3.2破解安装并配合kibana使用

    原文链接:https://www.plaza4me.com/article/20180825223826278 由于在elasticsearch在6.3版本之后x-pack是默认安装好的,所以不再需要 ...

  9. Little-endian和Big-endian

    谈到字节序的问题,必然牵涉到两大CPU派系.那就是Motorola的PowerPC系列CPU和Intel的x86系列CPU.PowerPC系列采用big endian方式存储数据,而x86系列则采用l ...

  10. Build OpenJDK9 on macOS Sierra

    1. Get the source code: hg clone http://hg.openjdk.java.net/jdk9/jdk9 jdk9 cd jdk9 sh get_source.sh ...