Kind of a Blur

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2754    Accepted Submission(s): 751

Problem Description

Image blurring occurs when the object being captured is out of the camera's focus. The top two figures on the right are an example of an image and its blurred version. Restoring the original image given only the blurred version is one of the most interesting topics in image processing. This process is called deblurring, which will be your task for this problem.
In this problem, all images are in grey-scale (no colours). Images are represented as a 2 dimensional matrix of real numbers, where each cell corresponds to the brightness of the corresponding pixel. Although not mathematically accurate, one way to describe a blurred image is through averaging all the pixels that are within (less than or equal to) a certain Manhattan distance?from each pixel (including the pixel itself ). Here's an example of how to calculate the blurring of a 3x3 image with a blurring distance of 1:

Given the blurred version of an image, we are interested in reconstructing the original version assuming that the image was blurred as explained above.

 

Input

Input consists of several test cases. Each case is specified on H + 1 lines. The first line specifies three non negative integers specifying the width W, the height H of the blurred image and the blurring distance D respectively where (1<= W,H <= 10) and (D <= min(W/2,H/2)). The remaining H lines specify the gray-level of each pixel in the blurred image. Each line specifies W non-negative real numbers given up to the 2nd decimal place. The value of all the given real numbers will be less than 100.
Zero or more lines (made entirely of white spaces) may appear between cases. The last line of the input file consists of three zeros.
 

Output

For each test case, print a W * H matrix of real numbers specifying the deblurred version of the image. Each element in the matrix should be approximated to 2 decimal places and right justified in a field of width 8. Separate the output of each two consecutive test cases by an empty line. Do not print an empty line after the last test case. It is guaranteed that there is exactly one unique solution for every test case.
 

Sample Input

2 2 1
1 1
1 1

3 3 1
19 14 20
12 15 18
13 14 16

4 4 2
14 15 14 15
14 15 14 15
14 15 14 15
14 15 14 15

0 0 0

 

Sample Output

1.00 1.00
1.00 1.00

2.00 30.00 17.00
25.00 7.00 13.00
14.00 0.00 35.00

1.00 27.00 2.00 28.00
21.00 12.00 17.00 8.00
21.00 12.00 17.00 8.00
1.00 27.00 2.00 28.00

Hint

The Manhattan Distance (sometimes called the Taxicab distance) between
two points is the sum of the (absolute) difference of their coordinates.
The grid on the lower right illustrates the Manhattan distances from the grayed cell.

 

Source

 
高斯消元,居然是先输入宽,再输入高,被这个WA了好几发。。。
 //2017-08-05
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath> using namespace std; const int N = ;
const double eps = 1e-;
int n, m, d;
double G[N][N], A[N*N][N*N], x[N*N];
int equ, var; int Gauss(){
int i, j, k, col, max_r;
for(k = , col = ; k < equ && col < var; k++, col++){
max_r = k;
for(i = k+; i < equ; i++)
if(fabs(A[i][col]) > fabs(A[max_r][col]))
max_r = i;
if(fabs(A[max_r][col]) < eps)return ;
if(k != max_r){
for(j = col; j < var; j++)
swap(A[k][j], A[max_r][j]);
swap(x[k], x[max_r]);
}
x[k] /= A[k][col];
for(j = col+; j < var; j++)
A[k][j] /= A[k][col];
A[k][col] = ;
for(i = ; i < equ; i++)
if(i != k){
x[i] -= x[k]*A[i][k];
for(j = col+; j < var; j++)
A[i][j] -= A[k][j]*A[i][col];
A[i][col] = ;
}
}
return ;
} int main()
{
bool fg = true;
while(scanf("%d%d%d", &m, &n, &d)!=EOF){
if(!n && !m)break;
if(!fg)printf("\n");
fg = false;
memset(A, , sizeof(A));
for(int i = ; i < n; i++)
for(int j = ; j < m; j++){
scanf("%lf", &G[i][j]);
x[i*m+j] = G[i][j];
}
for(int i = ; i < n*m; i++){
int cnt = ;
for(int j = ; j < n*m; j++){
int x = i/m;
int y = i%m;
int dx = j/m;
int dy = j%m;
if(abs(x-dx)+abs(y-dy) <= d){
A[i][j] = 1.0;
cnt++;
}else A[i][j] = 0.0;
}
x[i] *= cnt;
}
equ = n*m;
var = n*m;
Gauss();
for(int i = ; i < n*m; i++){
if(i % m == m-)printf("%8.2lf\n", x[i]);
else printf("%8.2lf", x[i]);
}
} return ;
}

HDU3359(SummerTrainingDay05-I 高斯消元)的更多相关文章

  1. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  2. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

  3. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

  4. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  5. hihoCoder 1196 高斯消元·二

    Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...

  6. BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基

    [题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...

  7. SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元

    [题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...

  8. UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...

  9. [高斯消元] POJ 2345 Central heating

    Central heating Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 614   Accepted: 286 Des ...

随机推荐

  1. C#6.0语言规范(十六) 异常

    C#中的异常提供了一种结构化,统一且类型安全的方法来处理系统级和应用程序级错误条件.C#中的异常机制与C ++的异常机制非常相似,但有一些重要的区别: 在C#中,所有异常必须由派生自的类类型的实例表示 ...

  2. 【dpdk】使用libpcap-PMD驱动收发包

    ref: Dpdk programmer’s guide 1.  概述 dpdk不仅提供针对物理和虚拟网卡的pmd驱动(Poll Mode Drivers),还提供两个纯软件的pmd驱动,libpca ...

  3. jdk1.8一键安装脚本(linux环境)

    1.下载jdk安装包和安装脚本 下载地址:https://pan.baidu.com/s/1bo6ADQ3 其中包括: jdk安装包:jdk-8u151-linux-x64.tar.gz jdk一键安 ...

  4. odoo开发笔记 -- 异常、错误、警告、提示、确认信息显示

    1.检查业务逻辑中的错误,终止代码执行,显示错误或警告信息: raise osv.except_osv(_('Error!'), _('Error Message.')) 示例代码: #删除当前销售单 ...

  5. 执行bin/hdfs haadmin -transitionToActive nn1时出现,Automatic failover is enabled for NameNode at bigdata-pro02.kfk.com/192.168.80.152:8020 Refusing to manually manage HA state的解决办法(图文详解)

    不多说,直接上干货! 首先, 那么,你也许,第一感觉,是想到的是 全网最详细的Hadoop HA集群启动后,两个namenode都是standby的解决办法(图文详解) 这里,nn1,不多赘述了.很简 ...

  6. curl 详解【转】

    原文:https://blog.csdn.net/lansesl2008/article/details/14523303 用途说明 curl命令是一个功能强大的网络工具,它能够通过http.ftp等 ...

  7. Linux-(telnet,wget)

    telnet命令 telnet命令通常用来远程登录.telnet程序是基于TELNET协议的远程登录客户端程序.Telnet协议是TCP/IP协议族中的一员,是Internet远程登陆服务的标准协议和 ...

  8. Nginx+uwsgi+Django 的web应用环境部署-完整记录

    Python作为当前最火爆最热门,也是最主要的Web开发语言之一,在其二十多年的历史中出现了数十种Web框架,比如Django.Tornado.Flask.Twisted.Bottle和Web.py等 ...

  9. mongodb之oplog

    1.查看master上当前的oplog状态: >rs.printReplicationInfo() configured oplog size: 5000MBlog length start t ...

  10. android开发学习笔记系列(6)--代码规范

    在开发android的时候,我对自己写的代码很是不满,原因在于自己看到别人的代码,很是头痛,原因很简单,别人写的代码,我就要去猜他的意思,极其烦恼,嗯,就是他没有遵循代码规范,因此我在博客园上寻找一篇 ...