Kind of a Blur

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2754    Accepted Submission(s): 751

Problem Description

Image blurring occurs when the object being captured is out of the camera's focus. The top two figures on the right are an example of an image and its blurred version. Restoring the original image given only the blurred version is one of the most interesting topics in image processing. This process is called deblurring, which will be your task for this problem.
In this problem, all images are in grey-scale (no colours). Images are represented as a 2 dimensional matrix of real numbers, where each cell corresponds to the brightness of the corresponding pixel. Although not mathematically accurate, one way to describe a blurred image is through averaging all the pixels that are within (less than or equal to) a certain Manhattan distance?from each pixel (including the pixel itself ). Here's an example of how to calculate the blurring of a 3x3 image with a blurring distance of 1:

Given the blurred version of an image, we are interested in reconstructing the original version assuming that the image was blurred as explained above.

 

Input

Input consists of several test cases. Each case is specified on H + 1 lines. The first line specifies three non negative integers specifying the width W, the height H of the blurred image and the blurring distance D respectively where (1<= W,H <= 10) and (D <= min(W/2,H/2)). The remaining H lines specify the gray-level of each pixel in the blurred image. Each line specifies W non-negative real numbers given up to the 2nd decimal place. The value of all the given real numbers will be less than 100.
Zero or more lines (made entirely of white spaces) may appear between cases. The last line of the input file consists of three zeros.
 

Output

For each test case, print a W * H matrix of real numbers specifying the deblurred version of the image. Each element in the matrix should be approximated to 2 decimal places and right justified in a field of width 8. Separate the output of each two consecutive test cases by an empty line. Do not print an empty line after the last test case. It is guaranteed that there is exactly one unique solution for every test case.
 

Sample Input

2 2 1
1 1
1 1

3 3 1
19 14 20
12 15 18
13 14 16

4 4 2
14 15 14 15
14 15 14 15
14 15 14 15
14 15 14 15

0 0 0

 

Sample Output

1.00 1.00
1.00 1.00

2.00 30.00 17.00
25.00 7.00 13.00
14.00 0.00 35.00

1.00 27.00 2.00 28.00
21.00 12.00 17.00 8.00
21.00 12.00 17.00 8.00
1.00 27.00 2.00 28.00

Hint

The Manhattan Distance (sometimes called the Taxicab distance) between
two points is the sum of the (absolute) difference of their coordinates.
The grid on the lower right illustrates the Manhattan distances from the grayed cell.

 

Source

 
高斯消元,居然是先输入宽,再输入高,被这个WA了好几发。。。
 //2017-08-05
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath> using namespace std; const int N = ;
const double eps = 1e-;
int n, m, d;
double G[N][N], A[N*N][N*N], x[N*N];
int equ, var; int Gauss(){
int i, j, k, col, max_r;
for(k = , col = ; k < equ && col < var; k++, col++){
max_r = k;
for(i = k+; i < equ; i++)
if(fabs(A[i][col]) > fabs(A[max_r][col]))
max_r = i;
if(fabs(A[max_r][col]) < eps)return ;
if(k != max_r){
for(j = col; j < var; j++)
swap(A[k][j], A[max_r][j]);
swap(x[k], x[max_r]);
}
x[k] /= A[k][col];
for(j = col+; j < var; j++)
A[k][j] /= A[k][col];
A[k][col] = ;
for(i = ; i < equ; i++)
if(i != k){
x[i] -= x[k]*A[i][k];
for(j = col+; j < var; j++)
A[i][j] -= A[k][j]*A[i][col];
A[i][col] = ;
}
}
return ;
} int main()
{
bool fg = true;
while(scanf("%d%d%d", &m, &n, &d)!=EOF){
if(!n && !m)break;
if(!fg)printf("\n");
fg = false;
memset(A, , sizeof(A));
for(int i = ; i < n; i++)
for(int j = ; j < m; j++){
scanf("%lf", &G[i][j]);
x[i*m+j] = G[i][j];
}
for(int i = ; i < n*m; i++){
int cnt = ;
for(int j = ; j < n*m; j++){
int x = i/m;
int y = i%m;
int dx = j/m;
int dy = j%m;
if(abs(x-dx)+abs(y-dy) <= d){
A[i][j] = 1.0;
cnt++;
}else A[i][j] = 0.0;
}
x[i] *= cnt;
}
equ = n*m;
var = n*m;
Gauss();
for(int i = ; i < n*m; i++){
if(i % m == m-)printf("%8.2lf\n", x[i]);
else printf("%8.2lf", x[i]);
}
} return ;
}

HDU3359(SummerTrainingDay05-I 高斯消元)的更多相关文章

  1. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  2. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

  3. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

  4. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  5. hihoCoder 1196 高斯消元·二

    Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...

  6. BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基

    [题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...

  7. SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元

    [题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...

  8. UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...

  9. [高斯消元] POJ 2345 Central heating

    Central heating Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 614   Accepted: 286 Des ...

随机推荐

  1. java的基本数据类型--四类八种

    java的数据类型 1.分为基本数据类型和引用数据类型 基本数据类型的分类:整数型: byte  占用一个字节 范围-128-127 short 占用两个字节  -2^15~2^15-1 int    ...

  2. Swift5 语言指南(二十七) 访问控制

    访问控制限制从其他源文件和模块中的代码访问部分代码.此功能使您可以隐藏代码的实现细节,并指定一个首选接口,通过该接口可以访问和使用该代码. 您可以为各个类型(类,结构和枚举)以及属于这些类型的属性,方 ...

  3. Shell - 简明Shell入门09 - 重定向(Redirection)

    示例脚本及注释 #!/bin/bash pwd > 1.log # 输出重定向到指定文件 date 1> 1.log # ">"与"1>" ...

  4. Linux - APT包管理

    dpkg与apt dpkg用来安装本地deb格式软件包,但不会解决软件包的依赖关系. APT(Advanced Packaging Tool)是从更新源获取并安装软件包,而且会解决依赖关系, 但不会安 ...

  5. markdown的学习记录

    一.markdown用处: 写博客,写微信公众号等等 二.准备工作: 工具使用:由于代码经常使用idea,所以继续使用idea编写markdown,但需要安装插件:MarkDown Navigator ...

  6. POJ 2725

    #include <iostream> #include <string> #include <algorithm> #define MAXN 400005 usi ...

  7. windows store app 如何计算字符所占的宽度

    最近在做一个PDF电子文档相关的项目,我们的app是运行在Windows 8 / WinRT 下的.由于使用的第三方库的一些技术限制,text area竟然不支持多行文本自动换行.于是我们就需要自己实 ...

  8. numpy中int类型与python中的int

    [code] import numpy as np nparr = np.array([[1 ,2, 3, 4]]) np_int32 = nparr[0][0] # np_int=1 py_int ...

  9. python使用(三)

    1.function_option.py2.function_code_option.py3.thread_option.py4.class_option.py5.threading_option.p ...

  10. Firefox火狐 浏览器接口调试工具 JSON 格式化

    作为一名“IT界”的淫才,还是主攻Web端的淫才,相信大家经常会联调各种接口! 如今APP猖狂的年代接口联调更为频繁,当然我们常用于Firefox火狐 浏览器,所以这里主要讲Firefox火狐 浏览器 ...