Kind of a Blur

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2754    Accepted Submission(s): 751

Problem Description

Image blurring occurs when the object being captured is out of the camera's focus. The top two figures on the right are an example of an image and its blurred version. Restoring the original image given only the blurred version is one of the most interesting topics in image processing. This process is called deblurring, which will be your task for this problem.
In this problem, all images are in grey-scale (no colours). Images are represented as a 2 dimensional matrix of real numbers, where each cell corresponds to the brightness of the corresponding pixel. Although not mathematically accurate, one way to describe a blurred image is through averaging all the pixels that are within (less than or equal to) a certain Manhattan distance?from each pixel (including the pixel itself ). Here's an example of how to calculate the blurring of a 3x3 image with a blurring distance of 1:

Given the blurred version of an image, we are interested in reconstructing the original version assuming that the image was blurred as explained above.

 

Input

Input consists of several test cases. Each case is specified on H + 1 lines. The first line specifies three non negative integers specifying the width W, the height H of the blurred image and the blurring distance D respectively where (1<= W,H <= 10) and (D <= min(W/2,H/2)). The remaining H lines specify the gray-level of each pixel in the blurred image. Each line specifies W non-negative real numbers given up to the 2nd decimal place. The value of all the given real numbers will be less than 100.
Zero or more lines (made entirely of white spaces) may appear between cases. The last line of the input file consists of three zeros.
 

Output

For each test case, print a W * H matrix of real numbers specifying the deblurred version of the image. Each element in the matrix should be approximated to 2 decimal places and right justified in a field of width 8. Separate the output of each two consecutive test cases by an empty line. Do not print an empty line after the last test case. It is guaranteed that there is exactly one unique solution for every test case.
 

Sample Input

2 2 1
1 1
1 1

3 3 1
19 14 20
12 15 18
13 14 16

4 4 2
14 15 14 15
14 15 14 15
14 15 14 15
14 15 14 15

0 0 0

 

Sample Output

1.00 1.00
1.00 1.00

2.00 30.00 17.00
25.00 7.00 13.00
14.00 0.00 35.00

1.00 27.00 2.00 28.00
21.00 12.00 17.00 8.00
21.00 12.00 17.00 8.00
1.00 27.00 2.00 28.00

Hint

The Manhattan Distance (sometimes called the Taxicab distance) between
two points is the sum of the (absolute) difference of their coordinates.
The grid on the lower right illustrates the Manhattan distances from the grayed cell.

 

Source

 
高斯消元,居然是先输入宽,再输入高,被这个WA了好几发。。。
 //2017-08-05
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath> using namespace std; const int N = ;
const double eps = 1e-;
int n, m, d;
double G[N][N], A[N*N][N*N], x[N*N];
int equ, var; int Gauss(){
int i, j, k, col, max_r;
for(k = , col = ; k < equ && col < var; k++, col++){
max_r = k;
for(i = k+; i < equ; i++)
if(fabs(A[i][col]) > fabs(A[max_r][col]))
max_r = i;
if(fabs(A[max_r][col]) < eps)return ;
if(k != max_r){
for(j = col; j < var; j++)
swap(A[k][j], A[max_r][j]);
swap(x[k], x[max_r]);
}
x[k] /= A[k][col];
for(j = col+; j < var; j++)
A[k][j] /= A[k][col];
A[k][col] = ;
for(i = ; i < equ; i++)
if(i != k){
x[i] -= x[k]*A[i][k];
for(j = col+; j < var; j++)
A[i][j] -= A[k][j]*A[i][col];
A[i][col] = ;
}
}
return ;
} int main()
{
bool fg = true;
while(scanf("%d%d%d", &m, &n, &d)!=EOF){
if(!n && !m)break;
if(!fg)printf("\n");
fg = false;
memset(A, , sizeof(A));
for(int i = ; i < n; i++)
for(int j = ; j < m; j++){
scanf("%lf", &G[i][j]);
x[i*m+j] = G[i][j];
}
for(int i = ; i < n*m; i++){
int cnt = ;
for(int j = ; j < n*m; j++){
int x = i/m;
int y = i%m;
int dx = j/m;
int dy = j%m;
if(abs(x-dx)+abs(y-dy) <= d){
A[i][j] = 1.0;
cnt++;
}else A[i][j] = 0.0;
}
x[i] *= cnt;
}
equ = n*m;
var = n*m;
Gauss();
for(int i = ; i < n*m; i++){
if(i % m == m-)printf("%8.2lf\n", x[i]);
else printf("%8.2lf", x[i]);
}
} return ;
}

HDU3359(SummerTrainingDay05-I 高斯消元)的更多相关文章

  1. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  2. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

  3. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

  4. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  5. hihoCoder 1196 高斯消元·二

    Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...

  6. BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基

    [题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...

  7. SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元

    [题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...

  8. UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...

  9. [高斯消元] POJ 2345 Central heating

    Central heating Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 614   Accepted: 286 Des ...

随机推荐

  1. Dubbo原理实现之与spring融合

    Spring中bean的定义可以通过编程,可以定义在properties文件,也可以定义在通过xml文件中,用的最多的是通过xml形式,由于xml格式具有很好的自说明便于编写及维护.对于xml的文档结 ...

  2. python 数据库连接及操作

    Python DB-API使用流程: 引入API模块. 获取与数据库的连接. 执行SQL语句和存储过程. 关闭数据库连接. def mysql_dbtest(): config = { 'host': ...

  3. java list集合运算

    list集合运算 import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.I ...

  4. POJ 2421

    #include<iostream> #include<stdio.h> #define MAXN 500 #define inf 100000000 using namesp ...

  5. 善用Intellij插件可大幅提升我们的效率

    转自 :https://www.jianshu.com/p/686ba0ae4ac2 1. .ignore 生成各种ignore文件,一键创建git ignore文件的模板,免得自己去写 截图: 2. ...

  6. centos7.2 部署zabbix 3.2.7

    centos7.2 部署zabbix 3.2.7[zabbix@zabbixServer ~]$ cat /etc/redhat-release CentOS Linux release 7.2.15 ...

  7. ssh-key的复制

    执行ssh-keygen 生产钥 在b主机root目录创建.ssh文件夹 在a主机输入ssh-copy-id root@*.*.*.* 就把公钥复制过去了 命令:scp 不同的Linux之间copy文 ...

  8. C#:时间日期操作(持续更新)

    1.给定时间戳返回指定的时间格式 private string StampToDate(string timeStamp,string format) { DateTime dtStart = Tim ...

  9. C#基础篇六飞行棋

    飞行棋业务:我们要能够让2个玩家 在地图上 按照游戏规则 进行游戏 玩家类 变量:玩家位置,玩家名称,玩家标识,玩家是否在陷阱中 方法:投骰子,移动 地图类 变量:地图数据数组 方法:初始化地图数据, ...

  10. mysql数据库中实现内连接、左连接、右连接

    原文:http://www.cnblogs.com/xwdreamer/archive/2010/12/15/2297058.html 内连接:把两个表中数据对应的数据查出来 外连接:以某个表为基础把 ...