Queuing

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6639    Accepted Submission(s): 2913

Problem Description
Queues
and Priority Queues are data structures which are known to most
computer scientists. The Queue occurs often in our daily life. There are
many people lined up at the lunch time.

  Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L
numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf .
If there exists a subqueue as fmf or fff, we call it O-queue else it is
a E-queue.
Your task is to calculate the number of E-queues mod M with length L by writing a program.
 
Input
Input a length L (0 <= L <= 10 6) and M.
 
Output
Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.
 
Sample Input
3 8
4 7
4 8
 
Sample Output
6
2
1
 

题意

给定一个队伍长度k,和mod,求队伍有多少种排列可能。其中,队伍排列要求: 不能出现 fff 或者 fmf

解题思路

类似递推思路, 1.若最后一个为m,则无论前一个为什么情况都可以,sum+=dp[i-1]

若最后一个为f,则  {

             2. 若前一位为m,则再之前一位必定为m,此时队列为mmf,此时可同第一种情况,由mmf前一位决定,此时sum+=dp[i-3]

             3. 若前一位为f,则队伍要符合题意之前依旧只能是mm,原理同第二种情况,此时队列为mmff,由mmff前一位决定,此时sum+=dp[i-4]

          }

得递推式,f(n)=f(n-1)+f(n-3)+f(n-4);

之后直接矩阵快速幂即可

则  f(n)    1 0 1 1      f(n-1)

  f(n-1)    1 0 0 0   f(n-2)

  f(n-2)       0 1 0 0  f(n-3)

f(n-3)        0 0 1 0   f(n-4)

手推枚举前4项,得f(1)=2  f(2)=4 f(3)=6 f(4)=9

具体实现看代码吧

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
typedef long long ll;
#define mod(x) ((x)%MOD)
ll MOD;
//2 4 6 9
struct mat
{
int m[maxn][maxn];
mat(){
memset(m,,sizeof(m));
}
}unit;
mat operator*(mat a,mat b)
{
mat ret;
ll x,n=;
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
x=;
for(int k=;k<n;k++)
{
x+=mod((ll)a.m[i][k]*b.m[k][j]);
}
ret.m[i][j]=mod(x);
}
}
return ret;
}
void iint()
{
for(int i=;i<maxn;i++)
{
unit.m[i][i]=;
}
return ;
}
mat pow1(mat a,ll n)
{
mat ret=unit;
while(n)
{
if(n&)
{
n--;ret=ret*a;
}
n>>=;
a=a*a;
}
return ret;
}
int main()
{
ll k;
mat b;
b.m[][]=; b.m[][]=; b.m[][]=; b.m[][]=;
//f(1)对于f(n)来说是f(n-4),这四项写反,查错了好久,哭
while(cin>>k>>MOD)
{
if(k<=) { cout<<b.m[-k][]%MOD<<endl;continue;}
iint(); //构建单位阵
mat a;
a.m[][]=a.m[][]=a.m[][]=a.m[][]=a.m[][]=a.m[][]=;
//a.m[0][1]=a.m[1][1]=a.m[1][2]=a.m[1][3]=a.m[2][0]=a.m[2][2]=a.m[2][3]=a.m[3][0]=a.m[3][1]=a.m[3][3]=0;
a=pow1(a,k-); //进行k-4次快速幂即可
a=a*b;
/*for(int i=0;i<4;i++)
{ //这是查看矩阵的= =
for(int j=0;j<4;j++)
{
if(j+1==4) cout<<a.m[i][j]<<endl;
else cout<<a.m[i][j]<<" ";
}
}*/
cout<<mod(a.m[][])<<endl;
}
return ;
}
 

HDU - 2604 Queuing(递推式+矩阵快速幂)的更多相关文章

  1. hdu 5950 Recursive sequence 递推式 矩阵快速幂

    题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\be ...

  2. HDU5950 Recursive sequence 非线性递推式 矩阵快速幂

    题目传送门 题目描述:给出一个数列的第一项和第二项,计算第n项. 递推式是 f(n)=f(n-1)+2*f(n-2)+n^4. 由于n很大,所以肯定是矩阵快速幂的题目,但是矩阵快速幂只能解决线性的问题 ...

  3. [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化

    这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...

  4. HDU-6185-Covering(推递推式+矩阵快速幂)

    Covering Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  5. [hdu 2604] Queuing 递推 矩阵快速幂

    Problem Description Queues and Priority Queues are data structures which are known to most computer ...

  6. [HDOJ2604]Queuing(递推,矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 递推式是百度的,主要是练习一下如何使用矩阵快速幂优化. 递推式:f(n)=f(n-1)+f(n- ...

  7. hdu 6185 递推+【矩阵快速幂】

    <题目链接> <转载于 >>> > 题目大意: 让你用1*2规格的地毯去铺4*n规格的地面,告诉你n,问有多少种不同的方案使得地面恰好被铺满且地毯不重叠.答案 ...

  8. hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)

    [题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形 ...

  9. [Lonlife1031]Bob and Alice are eating food(递推,矩阵快速幂)

    题目链接:http://www.ifrog.cc/acm/problem/1031 题意:6个水果中挑出n个,使得其中2个水果个数必须是偶数,问有多少种选择方法. 设中0代表偶数,1代表奇数.分别代表 ...

随机推荐

  1. ServiceDesk Plus解析内容,简化工单管理

  2. boost--线程

     1.thread的使用 boost的thread包含了线程创建.使用.同步等内容,使用thread需要包含头文件"boost\thread.hpp". thread中使用了需要编 ...

  3. ActiveMQ实战之 Queue点对点消息

    前言:ActiveMQ消息模式点对点编码 运行:先运行消费者在开启消息生产者即可接收到消息 消息生产者 /** * @摘要 测试发送单条数据的类 */ public class ZMQOneSendT ...

  4. HDU-3608 最长回文

    HDU-3608 最长回文 题面 Problem Description 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度. 回文就是正反读都是一样的字符串,如ab ...

  5. php大文件下载支持断点续传

    <?php   /** php下载类,支持断点续传  *  *   Func:  *   download: 下载文件  *   setSpeed: 设置下载速度  *   getRange: ...

  6. php 大文件上传的实现

    最近公司做工程项目,实现大文件上传 网上找了很久,发现网上很多代码大都存在很多问题,不过还是让我找到了一个符合要求的项目. 工程: 对项目的文件上传功能做出分析,找出文件上传的原理,对文件的传输模式深 ...

  7. 11-DOM介绍

    什么是DOM DOM:文档对象模型.DOM 为文档提供了结构化表示,并定义了如何通过脚本来访问文档结构.目的其实就是为了能让js操作html元素而制定的一个规范. DOM就是由节点组成的. 解析过程 ...

  8. 74(2B)Shortest Path (hdu 5636) (Floyd)

    Shortest Path Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  9. PAT甲级 1129. Recommendation System (25)

    1129. Recommendation System (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...

  10. CI、CD和dev-ops概念

    传统的开发方式是:需求方提供文档,实现方按照文档一步步开发,中间很少变动和修改. 但是随着市场的变化,产品更新迭代的加快,也要求开放方更快的响应变化,用最短的时间开发,部署上线. 这样,持续集成(CI ...