poj1947(树形背包)
题目链接:http://poj.org/problem?id=1947
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 13501 | Accepted: 6253 |
Description
Farmer John wants to know how much damage another earthquake could do. He wants to know the minimum number of roads whose destruction would isolate a subtree of exactly P (1 <= P <= N) barns from the rest of the barns.
Input
* Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads.
Output
Sample Input
11 6
1 2
1 3
1 4
1 5
2 6
2 7
2 8
4 9
4 10
4 11
Sample Output
2
Hint
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct{//链式前向星
int v,next;
}edge[];
int head[];
int dp[][];//dp[i][j]表示在i节点的子树里(不是以i组成的子树)去掉j个节点需要减少的最少的边数
int sum[];//sum[i]表示在i节点的子树里一个有多少个节点(不包括i)
int cnt;
void add(int u,int v){
edge[cnt].v=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
/*
i节点的子树(不包括i)
以i节点为根组成子树(树)(包括i)
*/
int n,m;
void dfs(int k){
sum[k]=;//初始化
for(int i=;i<=n;i++)//初始化
dp[k][i]=1e9;
dp[k][]=;//无论是哪个点,去掉0个节点的花费一定是0
for(int i=head[k];i!=-;i=edge[i].next){
dfs(edge[i].v);//先向子节点搜索
sum[k]+=sum[edge[i].v]+;//计算k节点的子树里有多少个节点
dp[edge[i].v][sum[edge[i].v]+]=;//去除当前子节点为根组成树的所有的节点的花费一定是1(只需断开k与当前子节点的连接)
//printf("%d %d %d\n",edge[i].v,sum[edge[i].v]+1,dp[edge[i].v][sum[edge[i].v]+1]) ;
for(int j=n;j>;j--){ //为什么要j>0,因为j=0的花费一定是0,没必要更新
for(int l=;l<=j;l++)
dp[k][j]=min(dp[k][j],dp[k][j-l]+dp[edge[i].v][l]);
/*为什么l从1开始,因为从0开始没必要(min(dp[k][j],dp[k][j]+dp[edge[i].v][0]);)它的
结果一定是原来的dp[k][j],因为 dp[edge[i].v][0]=0,为什么l可以等于j,因为我可以当前的j个全部
从当前子节点组成的子树去除*/
}
}
}
bool vt[];//标记数组
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
int u,v;
cnt=;
fill(head,head+,false);//初始化
fill(head,head+,-);
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
add(u,v);
vt[v]=true;
}
int root=;
for(int i=;i<=n&&!root;i++){//找根节点
if(!vt[i])
root=i;
}
dfs(root);
int ans=dp[root][n-m];//我要得到节点数为m的子树,需要去掉n-m个点
for(int i=;i<=n;i++)
if(sum[i]+>=m)
ans=min(ans,dp[i][sum[i]+-m]+);//取以第i个节点为根节点组成的子树(包括i)时,先要减去他与父节点的连接,
//然后再到子树里减去sum[i]+1-m个节点(因为以i为根组成的子树(树)只有sum[i]+1个节点)
printf("%d\n",ans);
} return ;
}
绿色的表示以2节点为根节点组成的子树
红色的表示2节点的子树

poj1947(树形背包)的更多相关文章
- poj2486Apple Tree[树形背包!!!]
Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9989 Accepted: 3324 Descri ...
- cdoj 1136 邱老师玩游戏 树形背包
邱老师玩游戏 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/1136 Desc ...
- HDU 1011 树形背包(DP) Starship Troopers
题目链接: HDU 1011 树形背包(DP) Starship Troopers 题意: 地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...
- poj 1155 TELE (树形背包dp)
本文出自 http://blog.csdn.net/shuangde800 题目链接: poj-1155 题意 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构, ...
- bzoj 4813: [Cqoi2017]小Q的棋盘 [树形背包dp]
4813: [Cqoi2017]小Q的棋盘 题意: 某poj弱化版?树形背包 据说还可以贪心... #include <iostream> #include <cstdio> ...
- [HAOI2015]树上染色(树形背包)
有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之间的距离加 ...
- Luogu 1273 有线电视网 - 树形背包
Description 树形背包, 遍历到一个节点, 枚举它的每个子节点要选择多少个用户进行转移. Code #include<cstring> #include<cstdio> ...
- BZOJ2427: [HAOI2010]软件安装 tarjan+树形背包
分析: 一开始我以为是裸的树形背包...之后被告知这东西...可能有环...什么!有环! 有环就搞掉就就可以了...tarjan缩点...建图记得建立从i到d[i]之后跑tarjan,因为这样才能判断 ...
- [Jsoi2016]最佳团体 BZOJ4753 01分数规划+树形背包/dfs序
分析: 化简一下我们可以发现,suma*ans=sumb,那么我们考虑二分ans,之后做树形背包上做剪枝. 时间复杂度证明,By GXZlegend O(nklogans) 附上代码: #includ ...
- BZOJ 2427 [HAOI2010]软件安装 | 这道树形背包裸题严谨地证明了我的菜
传送门 BZOJ 2427 题解 Tarjan把环缩成点,然后跑树形背包即可. 我用的树形背包是DFS序上搞的那种. 要注意dp数组初始化成-INF! 要注意dp顺推的时候也不要忘记看数组是否越界! ...
随机推荐
- Reids 持久化AOF 重写实现原理
AOF重写 AOF重写并不需要对原有AOF文件进行任何的读取,写入,分析等操作,这个功能是通过读取服务器当前的数据库状态来实现的.(auto-aof-rewrite-percentage和auto-a ...
- 1047 Integer Inquiry
String 大数加法模板 #include<stdio.h> #include<string> #include<iostream> using namespac ...
- 2 - Binary Search & LogN Algorithm - Apr 18
38. Search a 2D Matrix II https://www.lintcode.com/problem/search-a-2d-matrix-ii/description?_from=l ...
- Linux之nginx入门
nginx入门 详见可参考:https://www.cnblogs.com/tiger666/p/10239307.html?tdsourcetag=s_pctim_aiomsg 1. 常用的WEB框 ...
- edu9E. Thief in a Shop
题意:n个物品每个价值a[i],要求选k个,可以重复,问能取到哪几个价值 题解:fft裸题.但是直接一次fft,然后快速幂会boom.这样是严格的\(2^{20}*log2(2^{20})*log(w ...
- application.xml中配置文件properties导入
<bean id="propertyConfigurer" class="org.springframework.beans.factory.config.Prop ...
- 使用 ZipArchive 生成Zip文件备注
近两日研究了Abp.io 中模板项目的生成原理,是从Github下载源码包,进行修改.替换,然后生成新的zip包提供下载. 项目内部使用了 这个包 Ionic.Zip Version=" ...
- MySQL—增删改查,分组,连表,limit,union,alter,排序,去重
MySQL增删改查 在表格的增删改查中,查的内容是最多的,包括group by ,join,limit,union,alter,排序都是服务于查的 #sql语句数据行操作补充 #增加: #insert ...
- GDAL——命令使用专题——gdallocationinfo命令
GDAL——命令使用专题——gdallocationinfo命令 前言 GDAL(Geospatial Data Abstraction Library)是一个在X/MIT许可协议下的开源栅格空间数 ...
- 在配置hibernate.cfg.xml时需指定使用数据库的方言:
在配置hibernate.cfg.xml时需指定使用数据库的方言: 例: <property name="dialect">org.hibernate.dialect. ...