设 $f$ 是 $\bbR$ 上周期为 $1$ 的连续可微函数, 满足 $$\bee\label{141102_f} f(x)+f\sex{x+\frac{1}{2}}=f(2x),\quad\forall\ x. \eee$$ 试证: $f(x)=0$, $\forall\ x$.

证明: (from xida that this proof comes from ``Proofs of the book'' 4th edition, Chapter 23) 设 $g(x)=f'(x)$, 则对 \eqref{141102_f} 两边求导有 $$\bee\label{141102_g} g(x)+g\sex{x+\frac{1}{2}}=2g(2x). \eee$$ 设 $g$ 在 $x_0\in [0,1]$ 上取得最大值 $M$, 则于 \eqref{141102_g} 中令 $x=x_0/2$, 则有 $$\bex 2M\geq g\sex{\frac{x_0}{2}}+g\sex{\frac{x_0+1}{2}} =2g(x_0)=2M. \eex$$ 于是 $$\bex g\sex{\frac{x_0}{2}}=M\ra g(0)=\vlm{n}g\sex{\frac{x_0}{2^n}}=M. \eex$$ 同理, 讨论 $g$ 在 $[0,1]$ 上的最小值 $m$, 我们得到 $$\bex g(0)=m. \eex$$ 于是 $$\bex m=g(0)=M\ra g=\const\ra f(x)=a+mx, 0\leq x\leq 1. \eex$$ 又 $f(0)=f(1)$, 而 $m=0$, $f(x)=a$. 但由 \eqref{141102_f}, $f(x)=0$.

[再寄小读者之数学篇](2014-11-02 Herglotz' trick)的更多相关文章

  1. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  2. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  3. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  4. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  5. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  6. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  7. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  8. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  9. [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)

    试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...

  10. [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)

    设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.

随机推荐

  1. Redis学习笔记(4)——Redis五大数据结构介绍以及应用场景

    出处:https://www.jianshu.com/p/f09480c05e42 Redis是典型的Key-Value类型数据库,Key为字符类型,Value的类型常用的为五种类型:String.H ...

  2. c++11の条件变量

    一.条件变量的引入 std::condition_variable 解决了死锁并且控制的资源的访问顺序二避免不必要的等待.当互斥操作不够用而引入的.比如,线程可能需要等待某个条件为真才能继续执行,而一 ...

  3. SQL UNIQUE 约束

    SQL UNIQUE 约束 UNIQUE 约束唯一标识数据库表中的每条记录. UNIQUE 和 PRIMARY KEY 约束均为列或列集合提供了唯一性的保证. PRIMARY KEY 拥有自动定义的 ...

  4. WEB框架-Django组件学习-分页器学习

    1.分页器基础学习 1.1 补充知识-批量创建 数据库中数据批量创建,不要每创建一个就往数据库中塞一个,会造成撞库,造成大量I/O操作,速速较慢,应该采用一次性创建大量数据,一次性将大量数据塞入到数据 ...

  5. 勇者斗恶龙 uva 11292(简单贪心)

    思路:先将龙和士兵进行分别排序从小到大.然后,每次找当前最小龙的第一个大于它的骑手之后退出,开始下一个龙,重复上一次操作. #include<iostream> #include<a ...

  6. HTML多图无缝循环翻页效果

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. SystemCheckError: System check identified some issues: ERRORS: users.Test.groups: (fields.E304) Reverse accessor for 'Test.groups' clashes with reverse accessor for 'User.groups'.

    Error Msg: SystemCheckError: System check identified some issues: ERRORS: users.Test.groups: (fields ...

  8. sass的使用

    1.声明变量-全局声明-局部声明 中划线或下划线两种用法相互兼容  $nav-color: #F90; $highlight-border: 1px solid $nav-color;  nav{ $ ...

  9. MariaDB第三章:数据库设计与备份--小白博客

    数据库设计 1.第一范式(确保每列保持原子性) 第一范式是最基本的范式.如果数据库表中的所有字段值都是不可分解的原子值,就说明该数据库表满足了第一范式. 2.第二范式(确保表中的每列都和主键相关) 第 ...

  10. python之configparser模块详解--小白博客

    configparse模块 一.ConfigParser简介 ConfigParser 是用来读取配置文件的包.配置文件的格式如下:中括号“[ ]”内包含的为section.section 下面为类似 ...