1. 电磁能量密度: $\cfrac{1}{2}\sex{\ve_0E^2+\cfrac{1}{\mu_0}B^2}$.

2. 电磁能量流密度向量: ${\bf S}=\cfrac{1}{\mu_0}{\bf E}\times {\bf B}$.

3. 电磁动量密度向量: $\cfrac{1}{c^2}{\bf S}$.

4. 电磁动量流密度张量: $\cfrac{1}{2}\sex{\ve_0E^2+\cfrac{1}{\mu_0}B^2}{\bf I} -\ve_0{\bf E}\otimes {\bf E}-\cfrac{1}{\mu_0}{\bf B}\times {\bf B}$.

[物理学与PDEs]第1章第4节 电磁能量和电磁动量, 能量、动量守恒与转化定律 4.3 电磁能量 (动量) 密度, 电磁能量流 (动量流) 密度的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  6. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  10. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. 理论铺垫:阻塞IO、非阻塞IO、IO多路复用/事件驱动IO(单线程高并发原理)、异步IO

    完全来自:http://www.cnblogs.com/alex3714/articles/5876749.html 同步IO和异步IO,阻塞IO和非阻塞IO分别是什么,到底有什么区别?不同的人在不同 ...

  2. Python总结(一)

    从大学开始,就对python有了兴趣,毕业设计就是用python做的一个新闻爬取和关键字提取的程序.然而,毕业之后由于一直没有从事python相关的开发,所以就一直没有再使用,一直停留在偶尔看一些资料 ...

  3. MySQL之初识数据库

    一 数据库管理软件的由来 基于我们之前所学,数据要想永久保存,都是保存于文件中,毫无疑问,一个文件仅仅只能存在于某一台机器上. 如果我们暂且忽略直接基于文件来存取数据的效率问题,并且假设程序所有的组件 ...

  4. ELK的安装

    首先得安装好Elasticsearch.Kibana和Logstash(这里全部使用rpm安装的是6.4.2版本,而且都是单机安装,暂时没有考虑分布式安装.) 服务器内存要求至少为4G,下图为运行起来 ...

  5. Kafka 详解(三)------Producer生产者

    在第一篇博客我们了解到一个kafka系统,通常是生产者Producer 将消息发送到 Broker,然后消费者 Consumer 去 Broker 获取,那么本篇博客我们来介绍什么是生产者Produc ...

  6. ZabbixServer安装

    Zabbix服务端安装主要分二种一直yum在线安装,一种离线安装,在线安装只需简单命令自己便可安装离线安装得自定义路径等等...比较繁琐不过便于文件管理.这里简单配置一下在线安装. https://w ...

  7. Python开发第一篇

    Python 是什么? 首先他可能是比较好的一个编程开发语言!

  8. Listen 指令

    L:44

  9. 电脑装windows和ubuntu,如何卸载ubuntu系统

    电脑装windows和ubuntu,如何卸载ubuntu系统 2018年01月17日 16:28:29 职业炮灰 阅读数:684    版权声明:本文为博主原创文章,未经博主允许不得转载. https ...

  10. python doc格式转文本格式

    首先python是不能直接读写doc格式的文件的,这是python先天的缺陷.但是可以利用python-docx (0.8.6)库可以读取.docx文件或.txt文件,且一路畅通无阻. 这样的话,可以 ...