[物理学与PDEs]第1章第4节 电磁能量和电磁动量, 能量、动量守恒与转化定律 4.3 电磁能量 (动量) 密度, 电磁能量流 (动量流) 密度
1. 电磁能量密度: $\cfrac{1}{2}\sex{\ve_0E^2+\cfrac{1}{\mu_0}B^2}$.
2. 电磁能量流密度向量: ${\bf S}=\cfrac{1}{\mu_0}{\bf E}\times {\bf B}$.
3. 电磁动量密度向量: $\cfrac{1}{c^2}{\bf S}$.
4. 电磁动量流密度张量: $\cfrac{1}{2}\sex{\ve_0E^2+\cfrac{1}{\mu_0}B^2}{\bf I} -\ve_0{\bf E}\otimes {\bf E}-\cfrac{1}{\mu_0}{\bf B}\times {\bf B}$.
[物理学与PDEs]第1章第4节 电磁能量和电磁动量, 能量、动量守恒与转化定律 4.3 电磁能量 (动量) 密度, 电磁能量流 (动量流) 密度的更多相关文章
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
- [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构
一维理想反应流体力学方程组是一阶拟线性双曲组.
随机推荐
- logback.xml的使用,将日志异步保存到数据库中
想要把日志异步保存到数据库中,首先需要创建一个数据库,然后创建三张固定的表: https://github.com/xiaorenwu-dashijie/logback.git <?xml ve ...
- 【Python 17】B分R计算器1.0(数值类型)
1.案例描述 基础代谢率(BMR):我们安静状态下(通常为静卧状态)消耗的最低热量,人的其他活动都建立在这个基础上. 计算公式: BMR(男) = (13.7*体重kg)+(5.0*身高cm)-(6. ...
- python开发【lambda篇】
lambda 与 python 高级函数的配套使用 filter函数 过滤 __author__ = "Tang" # filter(lambda, []) people = [' ...
- kafka-rest:A Comprehensive, Open Source REST Proxy for Kafka
Ewen Cheslack-Postava March 25, 2015 时间有点久,但讲的还是很清楚的 As part of Confluent Platform 1.0 released ab ...
- Building Lambda Architecture with Spark Streaming
The versatility of Apache Spark’s API for both batch/ETL and streaming workloads brings the promise ...
- 【Topcoder 8572】TheLuckySum
题意:给一个数\(n\),要把它分成lucky numbers的和. 问个数最少.字典序最小的方案. 思路:果断搜索.个数最少,所以迭代加深.枚举要的个数\(m\). 首先我们看\(n\)的个位.它肯 ...
- 遍历CheckBox根据指定条件做筛选js
$('#del').click(function(){ var checkeds=$('input[name=cid]:checked') checkeds.each(function() { var ...
- Entity Framework Core系列之DbContext(添加)
上一篇我们介绍了Entity Framework Core系列之DbContext,对DbContext有了概念上的了解,这篇将介绍DbContext添加数据 通过DbContext添加实体的主要方法 ...
- Python可变参数*和**
可变参数 在Python函数中,还可以定义可变参数.顾名思义,可变参数就是传入的参数个数是可变的,可以是1个.2个到任意个,还可以是0个. 我们以数学题为例子,给定一组数字a,b,c……,请计算a2 ...
- vue实现点击展开,点击收起
安装vue的步骤在这里就不进行赘述了,下面直接进入正题 首先定义一下data里面的数据: data () { return { toLearnList:[ 'html','css','javascri ...