题目分析:

首先打个暴力求一下$10^9$以内因子最多的数的因子个数,发现只有$1344$个。

由于有$ax+by=k*(a,b)$和2017年noip的结论,所以我们可以发现对于任意多个数$a_1,a_2,a_3,...,a_n$他们能组成的数是$k$倍的最大公约数,$k$任取。我们发现如果$gcd%p$不是$w$的因子那么不行,否则可行。所以把$a$数组全部模$p$,再归类为每个因子,再处理相互之间能构建出来的$gcd$,再用莫比乌斯函数做一下容斥,再处理出每个因子的因子和,再对每个输入的$w$模$p$,答案可以$O(1)$回答。

代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ;
const int MXF = ;
const int mod = 1e9+; int n,q,p;
int fac[MXF],dt[MXF],num;
int a[maxn],chs[MXF],mu[MXF];
int pw2[maxn]; int gcd(int a,int b){
if(!b) return a;
else return gcd(b,a%b);
} void divide(){
for(int i=;i*i<=p;i++){
if(p%i) continue;
if(i*i == p) fac[++num] = i;
else{
fac[++num] = i;
fac[++num] = p/i;
}
}
sort(fac+,fac+num+);
} void read(){
scanf("%d%d%d",&n,&q,&p);
divide();
for(int i=;i<=n;i++) scanf("%d",&a[i]),a[i] = gcd(a[i],p);
for(int i=;i<=n;i++){
int z = lower_bound(fac+,fac+num+,a[i])-fac;
dt[z]++;
}
for(int i=;i<=num;i++){
int hh = fac[i]; mu[i] = ;
for(int j=;j*j<=hh;j++){
int cnt = ;
while(hh % j == ) cnt++,hh/=j;
if(cnt > )mu[i] = ;
else if(cnt) mu[i] = 1ll*mu[i]*(mod-)%mod;
}
if(hh != ){mu[i] = 1ll*mu[i]*(mod-)%mod;}
}
} void work(){
pw2[] = ; for(int i=;i<=n;i++) pw2[i] = pw2[i-]*%mod;
for(int i=;i<=num;i++){
int z = ;
for(int j=i;j<=num;j++){
if(fac[j] % fac[i] == ) z+=dt[j];
}
chs[i] = (pw2[z]-)%mod;
}
for(int i=;i<=num;i++){
for(int j=i+;j<=num;j++){
if(fac[j] % fac[i]) continue;
int ct = lower_bound(fac+,fac+num+,fac[j]/fac[i])-fac;
chs[i] = chs[i]+1ll*mu[ct]*chs[j]%mod; chs[i] %= mod;
}
}
for(int i=num;i>=;i--){
for(int j=;j<i;j++){
if(fac[i] % fac[j] == ) chs[i] += chs[j],chs[i] %= mod;
}
}
for(int i=;i<=q;i++){
int x; scanf("%d",&x); x = gcd(x,p);
x = lower_bound(fac+,fac+num+,x)-fac;
printf("%d\n",chs[x]);
}
} int main(){
read();
work();
return ;
}

Luogu4495 [HAOI2018] 奇怪的背包 【扩展欧几里得算法】的更多相关文章

  1. noip知识点总结之--欧几里得算法和扩展欧几里得算法

    一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a  ...

  2. 扩展欧几里得算法(extgcd)

    相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义 ...

  3. 欧几里得算法与扩展欧几里得算法_C++

    先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证 ...

  4. vijos1009:扩展欧几里得算法

    1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1= ...

  5. ****ural 1141. RSA Attack(RSA加密,扩展欧几里得算法)

    1141. RSA Attack Time limit: 1.0 secondMemory limit: 64 MB The RSA problem is the following: given a ...

  6. 浅谈扩展欧几里得算法(exgcd)

    在讲解扩展欧几里得之前我们先回顾下辗转相除法: \(gcd(a,b)=gcd(b,a\%b)\)当a%b==0的时候b即为所求最大公约数 好了切入正题: 简单地来说exgcd函数求解的是\(ax+by ...

  7. (light oj 1306) Solutions to an Equation 扩展欧几里得算法

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1306 You have to find the number of solutions ...

  8. 『扩展欧几里得算法 Extended Euclid』

    Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)( ...

  9. 【BZOJ5302】[HAOI2018]奇怪的背包(动态规划,容斥原理)

    [BZOJ5302][HAOI2018]奇怪的背包(动态规划,容斥原理) 题面 BZOJ 洛谷 题解 为啥泥萌做法和我都不一样啊 一个重量为\(V_i\)的物品,可以放出所有\(gcd(V_i,P)\ ...

随机推荐

  1. Redis的值value(数据结构类型)

    Redis的数据结构类型,指的是redis的值的value类型: Redis的常用数据结构类型:string,list,set,sortedSet,hash 一.sting的类型 string类型是r ...

  2. css3自适应布局单位vw,vh你知道多少?

    视口单位(Viewport units) 什么是视口? 在桌面端,视口指的是在桌面端,指的是浏览器的可视区域:而在移动端,它涉及3个视口:Layout Viewport(布局视口),Visual Vi ...

  3. jquery之冒泡事件介绍以及阻止冒泡

    什么是事件冒泡 <div style="width: 200px;height: 200px;background: red;margin: 200px auto;" onc ...

  4. html和css的使用方法以及样式

    布局步骤 第一步: 清除默认样式第二步: 划分模块第三步: 设置模块的大小以及位置第四步: 划分下一级模块 html和css 引入网页头像 <link rel="shortcut ic ...

  5. setTimeout传参 和 运行机制

    1.setTimeout 传参数 setTimeout还允许添加更多的参数.它们将被传入推迟执行的函数(回调函数) 上面代码中,setTimeout共有4个参数.最后那两个参数,将在1000毫秒之后回 ...

  6. FineReport数据库连接(oracle+plsql)(1)

    一.  数据库建表 数据库是Oracle12c,工具是plsql.具体操作百度即可,此处不赘述.(图1) 图1 二.  FineReport中建立数据库连接 在上方选项卡中单击服务器,选择定义数据连接 ...

  7. arcgis api 3.x for js 入门开发系列十七在线天地图、百度地图、高德地图(附源码下载)

    前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...

  8. vue 外部字体图标使用,无须绝对路径引入办法

    通常外部字体图标都在使用 iconfont ,这种图标在网上搜到一大把都是由于路径问题显示不出来,或者是显示个方块. 最近的项目中也碰到这个坑爸的问题,总结一下解决办法: 和 webpack.conf ...

  9. Node.js安装及环境配置之Windows篇---完美,win7已测

    一.安装环境 1.本机系统:Windows 10 Pro(64位) (楼主win7,完美通过)2.Node.js:v6.9.2LTS(64位) (楼主版本2018-11-01下载的最新版本) 二.安装 ...

  10. ZOJ 2480 - Simplest Task in Windows

    Simplest Task in Windows Time Limit: 2 Seconds      Memory Limit: 65536 KB A typical windows platfor ...