“Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文《Understanding the difficulty of training deep feedforward neural networks》

文章主要的目标就是使得每一层输出的方差应该尽量相等。下面进行推导:每一层的权重应该满足哪种条件才能实现这个目标。

  我们将用到以下和方差相关的定理:

假设有随机变量x和w,它们都服从均值为0,方差为σ的分布,且独立同分布,那么:

•      w*x就会服从均值为0,方差为σ*σ的分布

•      w*x+w*x就会服从均值为0,方差为2*σ*σ的分布

  文章实验用的激活函数是tanh激活函数,函数形状如下左图,右图是其导数的函数形状。

从上图可以看出,当x处于0附近时,其导数/斜率接近与1,可以近似将其看成一个线性函数,即f(x)=x。

  我们假设所有的输入数据x满足均值为0,方差为的分布,我们再将参数w以均值为0,方差为的方式进行初始化。我们假设第一层是卷积层,卷积层共有n个参数(n=channel*kernel_h*kernel_w),于是为了计算出一个线性部分的结果,我们有:

其中,忽略偏置b。

假设输入x和权重w独立同分布,我们可以得出z服从均值为0,方差为的分布,即

  为了更好地表达,我们将层号写在变量的上标处,

  我们将卷积层和全连接层统一考虑成n个参数的一层,于是接着就有:

  

  如果我们是一个k层的网络(这里主要值卷积层+全连接层的总和数),我们就有

  继续展开,最终可以得到

从上式可以看出,后面的连乘是非常危险的,假如说总是大于1,那么随着层数越深,数值的方差会越来越大;如果乘积小于1,那么随着层数越深,数值的方差会越来越小。

我们再回头看看这个公式,

  如果,那么我们就能保证每层输入与输出的方差保持一致,那么应该满足:

  即对应任意第i层,要想保证输入与输出的方差保持一致,需要满足:

------------------------------------------------------------------------------------------------

上面介绍的是前向传播的情况,那么对于反向传播,道理是一样的。

假设我们还是一个k层的网络,现在我们得到了第k层的梯度,那么对于第k-1层输入的梯度,有

  从上式可以看出K-1层一个数值的梯度,相当于上一层的n个参数的乘加。这个n个参数的计算方式和之前方式一样,只是表示了输出端的数据维度,在此先不去赘述了。

  于是我们假设每一层的参数服从均值为0,方差为某值的分布,那么有如下公式:

对于这个k层网络,我们又可以推导出一个的公式:

上式中连乘是非常危险的,前面说过,在此不在赘述(这就会造成梯度爆炸与梯度消失的问题,梯度爆炸与梯度消失可以参考这两篇文章)。我们想要做到数值稳定,使得反向传播前后的数值服从一个稳定的分布,即

那么需要满足如下条件:

-----------------------------------------------------------------

  如果仔细看一下前向传播与反向传播的两个公式,我们就会发现两个n实际上不是同一个n。对于全连接来说,前向操作时,n表示了输入的维度,而后向操作时,n表示了输出的维度。而输出的维度也可以等于下一层的输入维度。所以两个公式实际上可以写作:

于是为了均衡考量,最终我们的权重方差应满足:

  

  下面就是对这个方差的具体使用了。论文提出使用均匀分布进行初始化,我们设定权重要初始化的范围是[-a,a]。而均匀分布的方差为:

由此可以求得

上面就是xavier初始化方法,即把参数初始化成下面范围内的均匀分布。

转载自:

CNN数值——xavier(上):https://zhuanlan.zhihu.com/p/22028079

CNN数值——xavier(下): https://zhuanlan.zhihu.com/p/22044472

深度学习——Xavier初始化方法:https://blog.csdn.net/shuzfan/article/details/51338178

深度学习中Xavier初始化的更多相关文章

  1. 深度学习的Xavier初始化方法

    在tensorflow中,有一个初始化函数:tf.contrib.layers.variance_scaling_initializer.Tensorflow 官网的介绍为: variance_sca ...

  2. 深度学习中常见的 Normlization 及权重初始化相关知识(原理及公式推导)

    Batch Normlization(BN) 为什么要进行 BN 防止深度神经网络,每一层得参数更新会导致上层的输入数据发生变化,通过层层叠加,高层的输入分布变化会十分剧烈,这就使得高层需要不断去重新 ...

  3. 深度学习中优化【Normalization】

    深度学习中优化操作: dropout l1, l2正则化 momentum normalization 1.为什么Normalization?     深度神经网络模型的训练为什么会很困难?其中一个重 ...

  4. 深度学习中dropout策略的理解

    现在有空整理一下关于深度学习中怎么加入dropout方法来防止测试过程的过拟合现象. 首先了解一下dropout的实现原理: 这些理论的解释在百度上有很多.... 这里重点记录一下怎么实现这一技术 参 ...

  5. 深度学习中的Normalization模型

    Batch Normalization(简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize ...

  6. [优化]深度学习中的 Normalization 模型

    来源:https://www.chainnews.com/articles/504060702149.htm 机器之心专栏 作者:张俊林 Batch Normalization (简称 BN)自从提出 ...

  7. zz详解深度学习中的Normalization,BN/LN/WN

    详解深度学习中的Normalization,BN/LN/WN 讲得是相当之透彻清晰了 深度神经网络模型训练之难众所周知,其中一个重要的现象就是 Internal Covariate Shift. Ba ...

  8. 模型汇总24 - 深度学习中Attention Mechanism详细介绍:原理、分类及应用

    模型汇总24 - 深度学习中Attention Mechanism详细介绍:原理.分类及应用 lqfarmer 深度学习研究员.欢迎扫描头像二维码,获取更多精彩内容. 946 人赞同了该文章 Atte ...

  9. 深度学习中的Data Augmentation方法(转)基于keras

    在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augm ...

随机推荐

  1. python3.X中的循环

    获取数字范围: range() 在python3.x中使用range(): >>> list(range(7)) [0, 1, 2, 3, 4, 5, 6] >>> ...

  2. STL --> set用法

    set用法 一.set和multiset基础 set和multiset会根据特定的排序准则,自动将元素进行排序.不同的是后者允许元素重复而前者不允许. 需要包含头文件: #include <se ...

  3. bashell基础

    身为一个iOS程序员,虽然iOS相关技术十分重要,但是bash也是不可不了解的,因为技能的成长,除了深度,还需要广度.下面就来介绍下bash. Shell是C语言编写的,所以他是解释性语言,运行在Li ...

  4. mysql学习第一天

    Mysql语句语法 一.数据库定义语句(DDL) 1.alter database 语法 alter database 用于更改数据库的全局特性,这些特性存储在数据库目录中的db.opt文件中.要使用 ...

  5. Oracle安装11.2.0.4.180116补丁及如何检查数据库安装补丁

    最近做了一个安装11.2.0.4.180116补丁的实验,突然想起之前和同事讨论的一个问题:如何检查数据库安装补丁的版本,之前搜到的是去查dba_registry_history,有的说在操作系统中执 ...

  6. MySQL_执行计划详细说明

          1 简要说明 id 表格查询的顺序编号. 降序查看,id相同的从上到下查查看. id可以为null ,当table为( union ,m,n )类型的时候,id为null,这个时候,id的 ...

  7. MySQL之连接查询

    主要是多表查询和连接查询

  8. 关于如何学习C语言

    2016级计算机专业的C语言分为两个学期,第一学期是C语言(基础),第二学期是C语言(高级),在第一学期主要学习的内容是基本的数据类型,分支结构和循环结构,一维和二维数组,字符数组,函数.通过这学期独 ...

  9. C语言第七次作业

    一.PTA实验作业 题目1:求整数序列中出现次数最多的数 1.本题PTA提交列表 2.设计思路 定义一个整型数组a[1001],i,j 为循环变量,N,定义数组b[1001]={0} 输入N for( ...

  10. 201621123025《Java程序设计》第二周学习总结

    1.本周学习总结 以几个关键词描述本周的学习内容.并将关键词之间的联系描述或绘制出来. 答:java的两种数据类型:基本数据类型和引用数据类型:==与equals的区别:动态数组. 2.书面作业 1. ...